Skip to main content

Toward Room Temperature Operation of Dopant Atom Transistors

  • Conference paper
  • First Online:
Recent Global Research and Education: Technological Challenges

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 519))

Abstract

As an extremely miniaturized Si transistor (MOSFET) close to the atomic scale, Dopant Atom Transistor is one of the promising candidates and the research field has been rapidly growing in the last decade. The dopant atom transistor consists of a dopant-induced quantum dot in the channel and its carrier transport is tunnelling of electrons or holes from the source to the drain through the single dopant atom. Until now, operation temperature has been mostly limited to 20 K or even below, since the ground state of the dopant is too shallow. In order to resolve this issue, we study potential deepening effect by application of a “cluster” or a “molecule” of dopant atoms, which is a number of dopant atoms closely gathering. As a result, it is shown that operation temperature approaches room temperature. In this work, a guiding principle for high temperature operation will be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moraru, D., Udhiarto, A., Anwar, M., Nowak, R., Jabłoński, R., Hamid, E., Tarido, J.C., Mizuno, T., Tabe, M.: Nanoscale Res. Lett. 6, 479 (2011)

    Article  Google Scholar 

  2. Sellier, H., Lansbergen, G.P., Caro, J., Rogge, S., Collaert, N., Ferain, I., Jurczak, M., Biesemans, S.: Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys. Rev. Lett. 97, 206805 (2006)

    Article  Google Scholar 

  3. Lansbergen, G.P., Rahman, R., Wellard, C.J., Woo, I., Caro, J., Collaert, N., Biesemans, S., Klimeck, G., Hollenberg, L.C.L., Rogge, S.: Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys. 4, 656–661 (2008)

    Article  Google Scholar 

  4. Ono, Y., Nishiguchi, K., Fujiwara, A., Yamaguchi, H., Inokawa, H., Takahashi, Y.: Conductance modulation by individual acceptors in Si nanoscale field-effect transistors. Appl. Phys. Lett. 90, 102106 (2007)

    Article  Google Scholar 

  5. Tabe, M., Moraru, D., Ligowski, M., Anwar, M., Jablonski, R., Ono, Y., Mizuno, T.: Single-electron transport through single dopants in a dopant-rich environment. Phys. Rev. Lett. 105, 016803 (2010)

    Article  Google Scholar 

  6. Pierre, M., Wacquez, R., Jehl, X., Sanquer, M., Vinet, M., Cueto, O.: Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol. 5, 133–137 (2010)

    Article  Google Scholar 

  7. Prati, E., Hori, M., Guagliardo, F., Ferrari, G., Shinada, T.: Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat. Nanotechnol. 7, 443–447 (2012)

    Article  Google Scholar 

  8. Diarra, M., Niquet, Y.M., Delerue, C., Allan, G.: Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys Rev B. 75, 045301 (2007)

    Article  Google Scholar 

  9. Li, B., Partoens, B., Peeters, F.M., Magnus, W.: Dielectric mismatch effect on coupled shallow impurity states in a semiconductor nanowire. Phys. Rev. B. 79, 085306 (2009)

    Article  Google Scholar 

  10. Björk, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4, 103–107 (2009)

    Article  Google Scholar 

  11. Hamid, E., Moraru, D., Kuzuya, Y., Mizuno, T., Anh, L.T., Mizuta, H., Tabe, M.: Electron-tunneling operation of single-donor-atom transistors at elevated temperatures. Phys. Rev. B. 87, 085420 (2013)

    Article  Google Scholar 

  12. Moraru, D., Samanta, A., Anh, L.T., Mizuno, T., Mizuta, H., Tabe, M.: Transport spectroscopy of coupled donors in silicon nano-transistors. Sci. Rep. 4, 6219 (2014)

    Article  Google Scholar 

  13. Moraru, D., Samanta, A., Krzysztof, T., Anh, L.T., Muruganathan, M., Mizuno, T., Jabłoński, R., Mizuta, H., Tabe, M.: Nanoscale Res. Lett. 10, 372 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiharu Tabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tabe, M., Samanta, A., Moraru, D. (2017). Toward Room Temperature Operation of Dopant Atom Transistors. In: Jabłoński, R., Szewczyk, R. (eds) Recent Global Research and Education: Technological Challenges. Advances in Intelligent Systems and Computing, vol 519. Springer, Cham. https://doi.org/10.1007/978-3-319-46490-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46490-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46489-3

  • Online ISBN: 978-3-319-46490-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics