Skip to main content
  • 1524 Accesses

Abstract

The purpose of perioperative and critical care transcranial Doppler (TCD) ultrasonographic monitoring is to assess cerebral perfusion change. This is accomplished through noninvasive continuous measurement of blood flow-velocity within the largest intracranial blood vessels. Because normative velocity values may vary widely, the primary monitoring objective generally is the trending of relative velocity. Changes in blood flow and flow-velocity are proportional as long as blood viscosity and vessel diameter remain constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Asterisk indicates key reference.

References

Asterisk indicates key reference.

  1. Beaudin AE, Brugniaux JV, Vöhringer M, Flewitt J, Green JD, Friedrich MG, et al. Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. Am J Physiol Heart Circ Physiol. 2011;301:H1678–86.

    Article  CAS  PubMed  Google Scholar 

  2. *Purkayastha S, Sorond F. Transcranial Doppler ultrasound: technique and application. Semin Neurol. 2012;32:411–20.

    Google Scholar 

  3. Bathala L, Mehndiratta MM, Sharma VK. Transcranial Doppler: technique and common findings (Part 1). Ann Indian Acad Neurol. 2013;16:174–9.

    Google Scholar 

  4. Shiogai T, Koyama M, Yamamoto M, Hashimoto H, Yoshikawa K, Nakagawa M. Monitoring of brain tissue perfusion utilizing a transducer holder for transcranial color duplex sonography. Acta Neurochir. 2013;118(Suppl):229–33.

    Google Scholar 

  5. Stewart JM, Medow MS, DelPozzi A, Messer ZR, Terilli C, Schwartz CE. Middle cerebral O2 delivery during the modified Oxford maneuver increases with sodium nitroprusside and decreases during phenylephrine. Am J Physiol Heart Circ Physiol. 2013;304:H1776–83.

    Article  Google Scholar 

  6. Shen Q, Stuart J, Venkatesh B, Wallace J, Lipman J. Inter-observer variability of the transcranial Doppler ultrasound technique: impact of lack of practice on the accuracy of measurement. J Clin Monit Comput. 1990;15:179–84.

    Article  Google Scholar 

  7. *Suri MF, Georgiadis AL, Tariq N, Vazquez G, Qureshi N, Qureshi AI. Estimated prevalence of acoustic cranial windows and intracranial stenosis in the US elderly population: ultrasound screening in adults for intracranial disease study. Neuroepidemiology. 2011;37:64–71

    Google Scholar 

  8. Edmonds Jr HL. Monitoring of cerebral perfusion with transcranial Doppler ultrasound. In: Nuwer MR, editor. Intraoperative monitoring of neural function—handbook of clinical neurophysiology, vol. 8. Amsterdam: Elsevier; 2008. p. 909–23.

    Google Scholar 

  9. Santalucia P, Feldmann E. The basic transcranial Doppler examination: technique and anatomy. In: Babikian VL, Wechsler LR, editors. Transcranial Doppler ultrasonography. 2nd ed. Boston: Butterworth-Heinemann; 1999. p. 13–31.

    Google Scholar 

  10. Edmonds HL Jr, Gordon EK, Levy WJ. Central nervous system monitoring. In: Kaplan JA, editor. Kaplan’s cardiac anesthesia. 7th ed. Philadelphia: Elsevier Saunders; 2016; in press.

    Google Scholar 

  11. *Willie CK, Colino FL, Bailey DM, Tzeng YC, Binsted G, Jones LW, et al. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods. 2011;196:221–37.

    Google Scholar 

  12. *Edmonds Jr HL, Isley MR, Sloan T, Alexandrov A, Razumovsky AY. American Society of Neurophysiologic Monitoring and American Society of Neuroimaging joint guidelines for transcranial Doppler ultrasonic monitoring. J Neuroimaging. 2011;21(2):177–83.

    Google Scholar 

  13. Clark JM, Skolnick BE, Gelfand R, Farber RE, Stierheim M, Stevens WC, et al. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow-velocity in men at rest. J. Cereb. Blood Flow Metab. 1996;16:1255–62.

    Google Scholar 

  14. Edmonds Jr HL, Singer I, Sehic A, Strickland T. Multimodality neuromonitoring for neurocardiology. J Interven Cardiol. 1998;11:197–204.

    Article  Google Scholar 

  15. Jørgensen LG. Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol Scand. 1995;625(Suppl):1–44.

    Google Scholar 

  16. Spencer MP. Transcranial Doppler monitoring and causes of stroke from carotid endarterectomy. Stroke. 1997;28:685–91.

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy RJ, McCabe AE, Walker R, Horrocks M. The value of transcranial Doppler in predicting cerebral ischaemia during carotid endarterectomy. Eur J Vasc Endovasc Surg. 2001;21:408–12.

    Article  CAS  PubMed  Google Scholar 

  18. Srinivasan J, Newell DW, Sturzenegger M, Mayberg MR, Winn HR. Transcranial Doppler in the evaluation of internal carotid artery dissection. Stroke. 1996;27:1226–30.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenkranz M, Gerloff C. Secondary bleeding into a subacute carotid wall hematoma. Circulation. 2010;131:e395–6.

    Article  Google Scholar 

  20. Schnaudigel S, Gröschel K, Pilgram SM, Kastrup A. New brain lesions after carotid stenting versus carotid endarterectomy. Stroke. 2008;39:1911–9.

    Article  PubMed  Google Scholar 

  21. Imai M, Hanaoka Y, Kemmotsuo K. Valve injury: a new complication of internal jugular vein cannulation. Anesth Analg. 1994;78:1041–6.

    CAS  PubMed  Google Scholar 

  22. Ganzel BL, Edmonds Jr HL, Pank JR, Goldsmith LJ. Neurophysiologic monitoring to assure delivery of retrograde cerebral perfusion. J Thorac Cardiovasc Surg. 1997;113:748–57.

    Article  CAS  PubMed  Google Scholar 

  23. Estrera AL, Garami Z, Miller III CC, Sheinbaum R, Huynh TT, Porat EE, et al. Cerebral monitoring with transcranial Doppler ultrasonography improves neurologic outcome during repairs of acute type A aortic dissection. J Thorac Cardiovasc Surg. 2005;129:277–85.

    Article  PubMed  Google Scholar 

  24. Neri E, Sassi C, Barabersi L, Massetti M, Pula G, Buklas D, et al. Cerebral autoregulation after hypothermic circulatory arrest in operations on the aortic arch. Ann Thorac Surg. 2004;77:72–9.

    Article  PubMed  Google Scholar 

  25. Rodriguez RA, Cornel G, Semelhago L, Splinter WM, Weerasena NA. Cerebral effects in superior vena caval cannula obstruction: the role of brain monitoring. Ann Thorac Surg. 1997;64:1820–4.

    Article  CAS  PubMed  Google Scholar 

  26. Kim Y, Sin DS, Park HY, Park MS, Cho KH. Relationship between flow diversion on transcranial Doppler sonography and leptomeningeal collateral circulation in patients with middle cerebral artery occlusive disorder. J Neuroimaging. 2009;19:23–6.

    Article  PubMed  Google Scholar 

  27. Hirooka R, Ogasawara K, Sasaki M, Yamadate K, Kobayashi M, Suga Y, et al. Magnetic resonance imaging in patients with cerebral hyperperfusion and cognitive impairment after carotid endarterectomy. J Neurosurg. 2008;108:1178–83.

    Article  PubMed  Google Scholar 

  28. Bakoyiannis CN, Tsekouras N, Georgopoulos S, Tsigris C, Filis K, Skrapari I, et al. Can the diameter of endoluminal shunt influence the risk of hyperperfusion syndrome after carotid endarterectomy? Int Angiol. 2008;27:260–7.

    CAS  PubMed  Google Scholar 

  29. Wilson PV, Ammar AD. The incidence of ischemic stroke versus intracerebral hemorrhage after carotid endarterectomy: a review of 2,452 cases. Ann Vasc Surg. 2005;19:1–4.

    Article  PubMed  Google Scholar 

  30. Dalman JE, Beenakkers ICM, Moll FL, Leusink JA, Ackerstaff RG. Transcranial Doppler monitoring during carotid endarterectomy helps to identify patients at risk of postoperative hyperperfusion. Eur J Vasc Endovasc Surg. 1999;18:222–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ogasawara K, Yamadate K, Kobayashi M, Endo H, Fukuda T, Yoshida K, et al. Postoperative cerebral hyperperfusion associated with impaired cognitive function in patients undergoing carotid endarterectomy. J Neurosurg. 2005;102:38–44.

    Article  PubMed  Google Scholar 

  32. Ogasawara K, Sakai N, Kuriowa T, Hosoda K, Iihara K, Toyoda K, et al. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4,494 patients. J Neurosurg. 2007;107:1130–6.

    Article  PubMed  Google Scholar 

  33. Hudetz JA, Hoffmann RG, Patterson KM, Hosoda K, Iihara K, Toyoda K, et al. Preoperative dispositional optimism correlates with a reduced incidence of postoperative delirium and recovery of postoperative cognitive function in cardiac surgical patients. J Cardiothorac Vasc Anesth. 2010;24:560–7.

    Article  PubMed  Google Scholar 

  34. Thomason JW, Shintani A, Peterson JF, Pun BT, Jackson JC, Ely EW. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients. Crit Care. 2005;9:R375–81.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Joshi B, Brady K, Lee J, Easley B, Panigrahi R, Smielewski P, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg. 2010;110:321–8.

    Article  PubMed  Google Scholar 

  36. Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg. 2012;114:503–10.

    Article  PubMed  Google Scholar 

  37. Bonnet MP, Larousse E, Asehnoune K, Benhamou D. Spinal anesthesia with bupivacaine decreases cerebral blood flow in former preterm infants. Anesth Analg. 2004;98:1280–3.

    Article  PubMed  Google Scholar 

  38. Andropoulos DB, Easley RB, Brady K, McKenzie ED, Heinle JS, Dickerson HA, et al. Cerebral perfusion with neuromonitoring for neonatal aortic arch reconstruction. Ann Thorac Surg. 2013;95:648–54.

    Article  PubMed  Google Scholar 

  39. Imray C, Chan C, Stubbings A, Rhodes H, Patey S, Wilson MH, et al. Time course variations in the mechanisms by which cerebral oxygen delivery is maintained on exposure to hypoxia/altitude. High Alt Med Biol. 2014;15:21–7.

    Article  CAS  PubMed  Google Scholar 

  40. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590:3261–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH. Syncope, cerebral perfusion and oxygenation. J Appl Physiol. 2003;94:833–48.

    Article  PubMed  Google Scholar 

  42. Hancock SM, Mahajan RP, Athanassiou L. Noninvasive estimation of cerebral perfusion pressure and zero-flow pressure in healthy volunteers: the effects of changes in end-tidal carbon dioxide. Anesth Analg. 2003;96:847–51.

    Article  PubMed  Google Scholar 

  43. *Ono M, Joshi B, Brady K, Easley RB, Zheng Y, Brown C, et al. Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesthes. 2012;109:391–8.

    Google Scholar 

  44. Halpern P, Neufeld MY, Sade K, Silbiger A, Szold O, Bornstein NM, Sorkine P, et al. Middle cerebral artery flow-velocity decreases and electroencephalogram (EEG) changes occur as acute hypercapnia reverses. Intensive Care Med. 2003;29:1650–5.

    Article  PubMed  Google Scholar 

  45. Hosada K, Kawaguchi T, Ishii K, Minoshima S, Kohmura E. Comparison of conventional region of interest and statistical mapping method in brain single-photon emission computed tomography for prediction of hyperperfusion after carotid endarterectomy. Neurosurgery. 2005;57:32–41.

    Article  Google Scholar 

  46. Svyatets M, Tolani K, Zhang M, Tulman G, Charchaflieh J. Perioperative management of deep hypothermic circulatory arrest. J Cardiothorac Vasc Anesth. 2010;24:644–55.

    Article  PubMed  Google Scholar 

  47. Bedforth NM, Hardman JG, Nathanson MH. Cerebral hemodynamic response to the introduction of desflurane: a comparison with sevoflurane. Anesth Analg. 2000;91:152–5.

    CAS  PubMed  Google Scholar 

  48. Brassard P, Seifert T, Wissenberg M, Jensen PM, Hansen CK, Secher NH. Phenylephrine decreases frontal lobe oxygenation at rest but not during moderately intense exercise. J Appl Physiol (1985). 2010;108:1472–8.

    Google Scholar 

  49. McCall ML, Taylor HW. The action of hydergine on the circulation and metabolism of the brain in toxemia of pregnancy. Am J Med Sci. 1953;226:537–41.

    Article  CAS  PubMed  Google Scholar 

  50. Strangaard S, Olesen J, Skinhøj E, Lassen NA. Autoregulation of brain circulation in severe arterial hypertension. Br Med J. 1973;1(5852):507–11.

    Article  Google Scholar 

  51. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35.

    Article  CAS  PubMed  Google Scholar 

  52. van Alfen N, van Hal M, Karmann C. Coupling between electroencephalography pattern and cyclic transcranial Doppler flow during aortic root surgery. J Neurosurg Anesthesiol. 2011;23:55–6.

    Article  PubMed  Google Scholar 

  53. Gugino LD, Aglio LS, Edmonds Jr HL. Neurophysiological monitoring in vascular surgery. Baillieres Clin Anaesth. 2000;14:17–62.

    Google Scholar 

  54. Peca S, McCreary CR, Donaldson E, Kumarpillai G, Shobha N, Sanchez K, et al. Neurovascular decoupling is associated with severity of cerebral amyloid angiopathy. Neurology. 2013;81:1659–65.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jung HS, Sung T-Y, Kang H, Kim JS, Kim TY. Cerebral blood flow change during volatile induction in large-dose sevoflurane versus intravenous propofol induction: transcranial Doppler study. Korean J Anesthesiol. 2014;67:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab. 2016;36:647–64.

    Google Scholar 

  57. Alassar A, Soppa G, Edsell M, Rich P, Roy D, Chis Ster I, et al. Incidence and mechanisms of cerebral ischemia after transcatheter aortic valve implantation compared with surgical aortic valve replacement. Ann Thorac Surg. 2015;99:802–8.

    Article  PubMed  Google Scholar 

  58. Piorkowski M, Kläffling C, Botsios S, Zerweck C, Scheinert S, Banning-Eichenseher U, et al. Postinterventional microembolism signals detected by transcranial Doppler ultrasound after carotid artery stenting. Vasa. 2015;44:49–57.

    Article  PubMed  Google Scholar 

  59. Schramm P, Engelhard K, Scherhag A, Schier F, Werner C, et al. High-intensity transient signals during laparoscopic surgery in children. Br J Anaesth. 2010;104:224–7.

    Article  CAS  PubMed  Google Scholar 

  60. Koch S, Forteza A, Lavernia C, Romano JG, Campo-Bustillo I, Campo N, Gold S. Cerebral fat microembolism and cognitive decline after hip and knee replacement. Stroke. 2007;38:1079–81.

    Article  PubMed  Google Scholar 

  61. Guerrieri-Wolf L, Choudhary BP, Abu-Omar Y, Taggart DP. Solid and gaseous cerebral micro embolization after biologic and mechanical aortic valve replacement: investigation with multirange and multifrequency transcranial Doppler ultrasound. J Thorac Cardiovasc Surg. 2008;135:512–20.

    Article  PubMed  Google Scholar 

  62. Lepur D, Baršić B. Incidence of neurological complications in patients with native-valve infective endocarditis and cerebral microembolism: an open cohort study. Scand J Infect Dis. 2009;41:709–13.

    Article  Google Scholar 

  63. Kumral E, Balkir K, Uzuner N, Evyapan D, Nalbantgil S. Microembolic signal detection in patients with symptomatic and asymptomatic lone atrial fibrillation. Cerebrovasc Dis. 2001;13:192–6.

    Article  Google Scholar 

  64. Sato K, Hanzawa K, Okamoto T, Kyo S, Hayashi J. Frequency analysis of high-intensity transient signals of transcranial Doppler ultrasound in patients supported with a left ventricular assist device. J Artif Organs. 2008;11:201–3.

    Article  PubMed  Google Scholar 

  65. Payne DA, Jones CI, Hayes PD, Thompson MM, London NJ, Bell PR, et al. Beneficial effects of clopidogrel combined with aspirin in reducing cerebral emboli in patients undergoing carotid endarterectomy. Circulation. 2004;109:1476–81.

    Article  CAS  PubMed  Google Scholar 

  66. Saedon M, Singer DRJ, Pang R, Tiivas C, Hutchinson CE, Imray CH. Registry report on kinetics of rescue antiplatelet treatment to abolish cerebral microemboli after carotid endarterectomy. Stroke. 2013;44:230–3.

    Article  PubMed  Google Scholar 

  67. Kim K, Reynolds T, Donayre C, Kopchok G, White R, De Virgilio C, Chauvapun J. Predictability of cerebral embolization from aortic arch manipulations during thoracic endovascular repair. Am Surg. 2011;77:1399–409.

    PubMed  Google Scholar 

  68. Bismuth J, Garami Z, Anaya-Ayala JE, Naoum JJ, El Sayed HF, Peden EK, et al. Transcranial Doppler findings during thoracic endovascular repair. J Vasc Surg. 2011;54:364–9.

    Article  PubMed  Google Scholar 

  69. Gasparovic H, Borojevic M, Malojcic B, Gasparovic K, Biocina B. Single aortic clamping in coronary artery bypass surgery reduces cerebral embolism and improves neurocognitive outcomes. Vasc Med. 2013;18:275–81.

    Article  PubMed  Google Scholar 

  70. Yeh Jr T, Austin III EH, Sehic A, Edmonds Jr HL. Rapid recognition and treatment of cerebral air embolism: the role of neuromonitoring. J Thorac Cardiovasc Surg. 2003;126:589–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey L. Edmonds Jr. Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Edmonds, H.L. (2017). Transcranial Doppler Ultrasound. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Cham. https://doi.org/10.1007/978-3-319-46542-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46542-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46540-1

  • Online ISBN: 978-3-319-46542-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics