Skip to main content

Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Most recently, there has been an increasing interest for the production of laminates for semi-structural applications using sustainable materials. In this field, a possible option is the use of composites including ligno-cellulosic fibers, which are normally obtained as by-products from the textile industry, therefore mainly in the form of fabric or mats. Despite a reasonably large amount of studies on thermosetting composites reinforced with vegetable fibers also exist, in the view to replace fiberglass e.g., in the automotive industry, it is clear on the other side that the evolution of natural fiber composites has a much stronger drive towards the use of thermoplastic matrices and possibly biodegradable ones. Moreover, in terms of life cycle analysis (LCA), it is recommendable that both matrix and fiber are obtained from by-products or even better waste from an industrial or agricultural process, so that their use may represent as such a reduction in the environmental impact of the whole process. Therefore, this chapter discusses first the opportunities offered and challenges encountered in the production of natural fiber composites, then concentrating on the possibilities to obtain a polymer matrix alternative to petrol-based ones, especially in the particular case of manufacturing biopolymers by using agrowaste as received or with limited structural transformations rather than simply as a monomer (e.g., dextrose) source for polymer synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmouleh M, Boufi S, Belgacem M, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639. doi:10.1016/j.compscitech.2006.07.003

  • Adekunle K, Akesson D, Skrifvars M (2010) Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J Appl Polym Sci. doi:10.1002/app.31634

  • Andjelkovic DD, Larock RC (2006) Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization. Biomacromolecules 7(3):927–936. doi:10.1021/bm050787r

    Article  CAS  Google Scholar 

  • Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122. doi:10.1016/j.carbpol.2003.11.015

    Article  CAS  Google Scholar 

  • Avérous L, Fringant C, Moro L (2001a) Plasticized starch–cellulose interactions in polysaccharide composites. Polymer 42(15):6565–6572. doi:10.1016/S0032-3861(01)00125-2

    Article  Google Scholar 

  • Avérous L, Fringant C, Moro L (2001b) Starch-based biodegradable materials suitable for thermoforming packaging. Starch—Stärke 53(8):368. doi:10.1002/1521-379X(200108)53:8<368:AID-STAR368>3.0.CO;2-W

    Article  Google Scholar 

  • Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—polyester resin matrix. Compos Sci Technol 64(9):1219–1230. doi:10.1016/j.compscitech.2003.10.001

    Article  CAS  Google Scholar 

  • Barbosa V, Ramires EC, Razera IAT, Frollini E (2010) Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Ind Crops Prod 32(3):305–312. doi:10.1016/j.indcrop.2010.05.007

    Article  CAS  Google Scholar 

  • Barreto ACH, Esmeraldo MA, Rosa DS, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polym Compos 31(11):1928–1937. doi:10.1002/pc.20990

    Article  CAS  Google Scholar 

  • Barreto ACH, Rosa DS, Fechine PBA, Mazzetto SE (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos A Appl Sci Manuf 42(5):492–500. doi:10.1016/j.compositesa.2011.01.008

    Article  Google Scholar 

  • Barreto ACH, Junior AEC, Freitas JEB, Rosa DS, Barcellos WM, Freire FNA et al (2012) Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. J Compos Mater. doi:10.1177/0021998312441041

  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75. doi:10.1163/1568554053542188

    Article  CAS  Google Scholar 

  • Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger J et al (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew Chem (International ed. in English) 39(13):2206–2224

    Google Scholar 

  • Bisanda ET, Ogola W, Tesha J (2003) Characterisation of tannin resin blends for particle board applications. Cem Concr Compos 25(6):593–598. doi:10.1016/S0958-9465(02)00072-0

    Article  CAS  Google Scholar 

  • Boquillon N (2006) Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites. J Appl Polym Sci 101(6):4037–4043. doi:10.1002/app.23133

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169. doi:10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Campaner P, D’Amico D, Ferri P, Longo L, Maffezzoli A, Stifani C, Tarzia A (2010) Cardanol based matrix for jute reinforced pipes. Macromol Symp 296(1):526–530. doi:10.1002/masy.201051069

    Article  CAS  Google Scholar 

  • Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A Appl Sci Manuf 37(3):423–429. doi:10.1016/j.compositesa.2005.05.045

    Article  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510. doi:10.3144/expresspolymlett.2008.60

    Article  CAS  Google Scholar 

  • Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301–305. doi:10.1016/j.carbpol.2009.08.007

    Article  CAS  Google Scholar 

  • Chen Y, Zhang L, Deng R, Liang H (2006) Toughened composites prepared from castor oil based polyurethane and soy dreg by a one-step reactive extrusion process. J Appl Polym Sci 101(2):953–960. doi:10.1002/app.24023

    Article  CAS  Google Scholar 

  • Curvelo A (2001) Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr Polym 45(2):183–188. doi:10.1016/S0144-8617(00)00314-3

    Article  CAS  Google Scholar 

  • Da Silva Santos R, de Souza AA, De Paoli M-A, de Souza CML (2010) Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: preparation and characterization. Compos A Appl Sci Manuf 41(9):1123–1129. doi:10.1016/j.compositesa.2010.04.010

    Article  Google Scholar 

  • De Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431. doi:10.1016/j.carbpol.2009.04.034

  • De Teixeira EM, Curvelo AAS, Corrêa AC, Marconcini JM, Glenn GM, Mattoso LHC (2012) Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind Crops Prod 37(1):61–68. doi:10.1016/j.indcrop.2011.11.036

  • Derksen JTP, Cuperus FP, Kolster P (1996) Renewable resources in coatings technology: a review. Prog Org Coat 27(1–4):45–53. doi:10.1016/0300-9440(95)00518-8

    Article  CAS  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696. doi:10.1021/ma971532b

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092. doi:10.1002/(SICI)1097-4628(20000628)76:14<2080:AID-APP12>3.0.CO;2-U

    Article  CAS  Google Scholar 

  • Dutta S, Karak N, Baruah S (2010) Jute-fiber-reinforced polyurethane green composites based on Mesua ferrea L. seed oil. J Appl Polym Sci 115(2):843–850. doi:10.1002/app.30357

    Article  CAS  Google Scholar 

  • Dweib MA, Hu B, Shenton HW, Wool RP (2006) Bio-based composite roof structure: manufacturing and processing issues. Compos Struct 74(4):379–388. doi:10.1016/j.compstruct.2005.04.018

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. doi:10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  • Faulstich de Paiva JM, Frollini E (2006) Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol Mater Eng 291(4):405–417. doi:10.1002/mame.200500334

    Article  CAS  Google Scholar 

  • Francucci G, Vázquez A, Ruiz E, Rodríguez ES (2012) Capillary effects in vacuum-assisted resin transfer molding with natural fibers. Polym Compos 33(9):1593–1602. doi:10.1002/pc.22290

    Article  CAS  Google Scholar 

  • Frollini E, Oliveira FB, Ramires EC, Barbosa V Jr (2008) Composites based on tannins: production, process and uses

    Google Scholar 

  • Funke U, Bergthaller W, Lindhauer MG (1998) Processing and characterization of biodegradable products based on starch. Polym Degrad Stab 59(1–3):293–296. doi:10.1016/S0141-3910(97)00163-8

    Article  CAS  Google Scholar 

  • Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3–4):259–320. doi:10.1080/15583724.2012.705409

    Article  CAS  Google Scholar 

  • Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym 87(3):2068–2075. doi:10.1016/j.carbpol.2011.10.027

    Article  CAS  Google Scholar 

  • Gassan J, Bledzki AK (2001) Thermal degradation of flax and jute fibers. J Appl Polym Sci 82(6):1417–1422. doi:10.1002/app.1979

    Article  CAS  Google Scholar 

  • Ghassemi H, Schiraldi DA (2014) Thermoplastic elastomers derived from bio-based monomers. J Appl Polym Sci 131(3). doi:10.1002/app.39815

  • Gironès J, López JP, Mutjé P, Carvalho AJF, Curvelo AAS, Vilaseca F (2012) Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos Sci Technol 72(7):858–863. doi:10.1016/j.compscitech.2012.02.019

    Article  Google Scholar 

  • Gopalakrishnan S, Linda FT (2011) Bio-based thermosetting tough polyurethanes. Der Chem Sin 2(5):54–64

    CAS  Google Scholar 

  • Haq M, Burgueño R, Mohanty AK, Misra M (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68(15–16):3344–3351. doi:10.1016/j.compscitech.2008.09.007

    Article  CAS  Google Scholar 

  • Herrmann AS, Nickel J, Riedel U (1998) Construction materials based upon biologically renewable resources—from components to finished parts. Polym Degrad Stab 59(1–3):251–261. doi:10.1016/S0141-3910(97)00169-9

    Article  CAS  Google Scholar 

  • Ho M, Wang H, Lee J-H, Ho C, Lau K, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos B Eng 43(8):3549–3562. doi:10.1016/j.compositesb.2011.10.001

    Article  CAS  Google Scholar 

  • Hu B, Dweib M, Wool RP, Shenton HW (2007) Bio-based composite roof for residential construction. J Archit Eng 13(3):136–143. doi:10.1061/(ASCE)1076-0431(2007)13:3(136)

    Article  Google Scholar 

  • Jenck JF, Agterberg F, Droescher MJ (2004) Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem 6(11):544. doi:10.1039/b406854h

    Article  CAS  Google Scholar 

  • John J, Bhattacharya M, Turner RB (2002) Characterization of polyurethane foams from soybean oil. J Appl Polym Sci 86(12):3097–3107. doi:10.1002/app.11322

    Article  CAS  Google Scholar 

  • Kaewtatip K, Thongmee J (2012) Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater Des 40:314–318. doi:10.1016/j.matdes.2012.03.053

    Article  CAS  Google Scholar 

  • Kaewtatip K, Thongmee J (2014) Preparation of thermoplastic starch/treated bagasse fiber composites. Starch—Stärke 66(7–8):724–728. doi:10.1002/star.201400005

    Article  CAS  Google Scholar 

  • Kaplan DL (ed) (1998) Biopolymers from renewable resources. Springer, New York

    Google Scholar 

  • Keener T, Stuart R, Brown T (2004) Maleated coupling agents for natural fibre composites. Compos A Appl Sci Manuf 35(3):357–362. doi:10.1016/j.compositesa.2003.09.014

    Article  Google Scholar 

  • Khalil HA, Tehrani M, Davoudpour Y, Bhat A, Jawaid M, Hassan A (2013) Natural fiber reinforced poly(vinyl chloride) composites: a review. J Reinf Plast Compos 32(5):330–356. doi:10.1177/0731684412458553

    Article  Google Scholar 

  • Kim H-S, Yang H-S, Kim H-J, Lee B-J, Hwang T-S (2005) Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 81(2):299–306. doi:10.1007/s10973-005-0782-7

    Article  CAS  Google Scholar 

  • Kong C, Park H, Lee J (2014) Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Mater Lett 130:21–25. doi:10.1016/j.matlet.2014.05.042

    Article  CAS  Google Scholar 

  • Kouisni L, Fang Y, Paleologou M, Ahvazi B, Hawari J, Zhang Y, Wang XM (2011) Kraft lignin recovery and its use in the preparation of lignin-based phenol formaldehyde resins for plywood. Cellul Chem Technol 45(7–8):515–520

    CAS  Google Scholar 

  • Kozak N, Lobko E (2012) Bottom-up nanostructured segmented polyurethanes with immobilized in situ transition and rare-earth metal chelate compounds—polymer topology—structure and properties relationship, polyurethane, Dr. Fahmina Zafar (ed). InTech. doi:10.5772/48002, ISBN 978-953-51-0726-2

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42(4):856–873

    Article  Google Scholar 

  • Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171. doi:10.1007/s10853-007-1699-2

    Article  CAS  Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290. doi:10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  • Leblanc N, Saiter JM (2009) Characterization of bulk agro-green composites: sisal fiber reinforced wheat flour thermoplastics. Polym Compos. doi:10.1002/pc.20877

  • Lee K-Y, Wong LLC, Blaker JJ, Hodgkinson JM, Bismarck A (2011) Bio-based macroporous polymer nanocomposites made by mechanical frothing of acrylated epoxidised soybean oil. Green Chem 13(11):3117. doi:10.1039/c1gc15655a

    Article  CAS  Google Scholar 

  • Lin S, Huang J, Chang PR, Wei S, Xu Y, Zhang Q (2013) Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydr Polym 95(1):91–99. doi:10.1016/j.carbpol.2013.02.023

    Article  CAS  Google Scholar 

  • Liu Z, Erhan SZ (2008) “Green” composites and nanocomposites from soybean oil. Mater Sci Eng A 483–484:708–711. doi:10.1016/j.msea.2006.12.186

    Article  Google Scholar 

  • Liu Z, Erhan SZ, Akin DE, Barton FE (2006) “Green” composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites. J Agric Food Chem 54(6):2134–2137. doi:10.1021/jf0526745

    Article  CAS  Google Scholar 

  • Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos B Eng 38(3):352–359. doi:10.1016/j.compositesb.2006.05.003

    Article  CAS  Google Scholar 

  • Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34(12):1348–1368. doi:10.1016/j.progpolymsci.2009.07.001

    Article  CAS  Google Scholar 

  • Lligadas G, Ronda JC, Galià M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11(11):2825–2835. doi:10.1021/bm100839x

    Article  CAS  Google Scholar 

  • Lochab B, Shukla S, Varma IK (2014) Naturally occurring phenolic sources: monomers and polymers. RSC Adv 4:21712

    Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63(2):198–204. doi:10.1016/j.carbpol.2005.08.027

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296. doi:10.1016/j.polymer.2008.01.028

    Article  CAS  Google Scholar 

  • Lubi MC, Thachil ET (2007) Particleboard from cashew nut shell liquid. Polym Polym Compos 15:75–82

    Google Scholar 

  • Maffezzoli A, Calò E, Zurlo S, Mele G, Tarzia A, Stifani C (2004) Cardanol based matrix biocomposites reinforced with natural fibres. Compos Sci Technol 64(6):839–845. doi:10.1016/j.compscitech.2003.09.010

    Article  CAS  Google Scholar 

  • Mahendran AR, Wuzella G, Aust N, Muller U, Kandelbauer A (2013) Processing and characterization of natural fibre reinforced composites using lignin phenolic binder. Polym Polym Compos 21(4):199–205

    Google Scholar 

  • Mansouri NEEl, Yuan Q, Huang F (2011) Synthesis and characterization of kraft lignin-based epoxy resins. BioResources. doi:10.15376/biores.6.3.2492-2503

  • Masoodi R, Pillai KM (2012) A study on moisture absorption and swelling in bio-based jute-epoxy composites. J Reinf Plast Compos 31(5):285–294. doi:10.1177/0731684411434654

    Article  CAS  Google Scholar 

  • Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576. doi:10.1016/j.matdes.2011.11.042

    Article  CAS  Google Scholar 

  • Matyjaszewski K, Möller M (eds) (2012) Polymer science: a comprehensive reference. Elsevier B.V, Amsterdam

    Google Scholar 

  • Mazumdar S (2001) Composites manufacturing: materials, product, and process engineering. CRC Press, Boca Raton

    Google Scholar 

  • Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788. doi:10.1039/b703294c

    Article  CAS  Google Scholar 

  • Merlini C, Soldi V, Barra GMO (2011) Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym Test 30(8):833–840. doi:10.1016/j.polymertesting.2011.08.008

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343. doi:10.1163/156855401753255422

    Article  CAS  Google Scholar 

  • Mosiewicki MA, Casado U, Marcovich NE, Aranguren MI (2008) Vegetable oil based-polymers reinforced with wood flour. Mol Cryst Liquid Cryst 484(1):143/[509]–150/[516]. doi:10.1080/15421400801904344

  • Müssig J (2008) Cotton fibre-reinforced thermosets versus ramie composites: a comparative study using petrochemical- and agro-based resins. J Polym Environ 16(2):94–102. doi:10.1007/s10924-008-0089-4

    Article  Google Scholar 

  • Ofem MI, Umar M, Ovat FA (2012) Mechanical properties of rice husk filed cashew nut shell liquid resin composites. J Mater Sci Res 1(4):p89. doi:10.5539/jmsr.v1n4p89

    Google Scholar 

  • Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89(2):327–335. doi:10.1016/j.polymdegradstab.2005.01.016

  • Park S-J, Jin F-L, Lee J-R (2004) Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun 25(6):724–727. doi:10.1002/marc.200300191

    Article  CAS  Google Scholar 

  • Pfister DP, Larock RC (2012) Cationically cured natural oil-based green composites: effect of the natural oil and the agricultural fiber. J Appl Polym Sci 123(3):1392–1400. doi:10.1002/app.33636

    Article  CAS  Google Scholar 

  • Phillips S, Kuo P-K, Demaria C, Lessarda L, Yan N, Hubert P, Sain M (2013) Development of multi-scale biocomposites from flax, nanocellulose and epoxy by resin infusion. In: NIPMMP Conference. Montreal, Quebec

    Google Scholar 

  • Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41(22):8682–8687. doi:10.1021/ma8020213

    Article  CAS  Google Scholar 

  • Quirino RL, Garrison TF, Kessler MR (2014) Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chem 16(4):1700. doi:10.1039/c3gc41811a

    Article  CAS  Google Scholar 

  • Ramires EC, Frollini E (2012) Tannin–phenolic resins: synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers Composites: Part B 43:2851–2860

    Google Scholar 

  • Raquez J-M, Deléglise M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509. doi:10.1016/j.progpolymsci.2010.01.001

    Article  CAS  Google Scholar 

  • Raston C (2005) Renewables and green chemistry. Green Chem 7(2):57

    Article  Google Scholar 

  • Richardson MO, Zhang Z (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A Appl Sci Manuf 31(12):1303–1310. doi:10.1016/S1359-835X(00)00008-7

    Article  Google Scholar 

  • Rodriguez E, Giacomelli F, Vazquez A (2004) Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements. J Compos Mater 38(3):259–268. doi:10.1177/0021998304039269

    Article  Google Scholar 

  • Rösch J, Mülhaupt R (1993) Polymers from renewable resources: polyester resins and blends based upon anhydride-cured epoxidized soybean oil. Polym Bull 31(6):679–685

    Article  Google Scholar 

  • Sarkar S, Adhikari B (2001) Jute felt composite from lignin modified phenolic resin. Polym Compos 22(4):518–527. doi:10.1002/pc.10556

    Article  CAS  Google Scholar 

  • Sharma V, Kundu PP (2006) Addition polymers from natural oils—a review. Prog Polym Sci 31(11):983–1008. doi:10.1016/j.progpolymsci.2006.09.003

    Article  CAS  Google Scholar 

  • Shibata M, Nakai K (2010) Preparation and properties of biocomposites composed of bio-based epoxy resin, tannic acid, and microfibrillated cellulose. J Polym Sci Part B Polym Phys 48(4):425–433. doi:10.1002/polb.21903

    Article  CAS  Google Scholar 

  • Singha AS, Rana RK (2012) Natural fiber reinforced polystyrene composites: effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Mater Des 41:289–297. doi:10.1016/j.matdes.2012.05.001

    Article  CAS  Google Scholar 

  • Spontón M, Casis N, Mazo P, Raud B, Simonetta A, Ríos L, Estenoz D (2013) Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int Biodeterior Biodegradation 85:85–94

    Google Scholar 

  • Stewart D (2008a) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27(2):202–207. doi:10.1016/j.indcrop.2007.07.008

    Article  CAS  Google Scholar 

  • Stewart R (2008b) Going green: eco-friendly materials and recycling on growth paths. Plast Eng 64(1):16–23

    Google Scholar 

  • Sun G, Sun H, Liu Y, Zhao B, Zhu N, Hu K (2007) Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system. Polymer 48(1):330–337. doi:10.1016/j.polymer.2006.10.047

    Article  CAS  Google Scholar 

  • Tang D, Macosko CW, Hillmyer MA (2014) Thermoplastic polyurethane elastomers from bio-based poly(δ-decalactone) diols. Polym Chem 5(9):3231. doi:10.1039/c3py01120h

    Article  CAS  Google Scholar 

  • Tiamiyu AO, Ibitoye SA (2012) Effect of clay addition on service properties of a developed OPF–CNSL–formaldehyde roofing material. Constr Build Mater 36:358–364. doi:10.1016/j.conbuildmat.2012.04.130

    Article  Google Scholar 

  • Van den Oever MJA, Bos HL, van Kemenade MJJM (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7(5–6):387–402. doi:10.1023/A:1026594324947

    Article  Google Scholar 

  • Van Voorn B, Smit HH, Sinke R, de Klerk B (2001) Natural fibre reinforced sheet moulding compound. Compos A Appl Sci Manuf 32(9):1271–1279. doi:10.1016/S1359-835X(01)00085-9

    Article  Google Scholar 

  • Visakh PM, Thomas S, Chandra AK, Mathew AP (eds) (2013) Advances in elastomers II, vol 12. Springer, Berlin. doi:10.1007/978-3-642-20928-4

  • Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5(9):3142. doi:10.1039/c3py01194a

    Article  CAS  Google Scholar 

  • Wang R, Schuman TP (2013) Vegetable oil-derived epoxy monomers and polymer blends: a comparative study with review. Express Polym Lett 7(3):272–292

    Article  Google Scholar 

  • Wang R, Ma J, Zhou X, Wang Z, Kang H, Zhang L et al (2012) Design and preparation of a novel cross-linkable, high molecular weight, and bio-based elastomer by emulsion polymerization. Macromolecules 45(17):6830–6839. doi:10.1021/ma301183k

  • Wik VM, Aranguren MI, Mosiewicki MA (2011) Castor oil-based polyurethanes containing cellulose nanocrystals. Polym Eng Sci 51(7):1389–1396. doi:10.1002/pen.21939

    Article  CAS  Google Scholar 

  • Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432

    Google Scholar 

  • Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crops Prod 8(2):105–112. doi:10.1016/S0926-6690(97)10015-2

    Article  CAS  Google Scholar 

  • Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37(4):595–623. doi:10.1016/j.progpolymsci.2011.07.002

    Article  CAS  Google Scholar 

  • Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628. doi:10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  • Yeganeh H, Mehdizadeh MR (2004) Synthesis and properties of isocyanate curable millable polyurethane elastomers based on castor oil as a renewable resource polyol. Eur Polym J 40(6):1233–1238. doi:10.1016/j.eurpolymj.2003.12.013

    Article  CAS  Google Scholar 

  • Yin Q, Yang W, Sun C, Di M (2012) Preparation and properties of lignin epoxy resin composite. BioResources. doi:10.15376/biores.7.4.5737-5748

  • Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38(6):1569–1580. doi:10.1016/j.compositesa.2007.01.001

  • Zhu L, Wool RP (2006) Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer 47(24):8106–8115. doi:10.1016/j.polymer.2006.07.076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Santulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Puglia, D., Sarasini, F., Santulli, C., Kenny, J.M. (2017). Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites. In: Jawaid, M., Sapuan, S., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46610-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46610-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46609-5

  • Online ISBN: 978-3-319-46610-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics