Skip to main content

The Functional Resistance of Biofilms

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Antimicrobial drug tolerance/resistance exhibited by cells embedded in biofilm appears to be multifactorial, involving mechanisms similar to conventional planktonic antimicrobial drug resistance due to spontaneous mutations, secondary acquisition of drug resistance determinants from external sources through mobile genetic elements such as plasmids or transposons, and increased efflux pump activity governed by biofilm specific transcriptional regulators. In addition, mechanisms specific to the biofilm lifestyle of the organism can also confer unprecedented antimicrobial drug tolerance (otherwise known as resistance to the killing action of the antibiotic) even at high concentrations. Microbial biofilms have emerged as a significant clinical problem in the treatment and management of many infectious diseases over the last two decades. There are several reasons for the steady increase in the frequency of microbial biofilm being recognized in clinical settings, especially the increased use of life-saving or quality of life improving artificial devices. The existence of microbial biofilms impacts the treatment and care of patients suffering from infectious diseases in numerous ways. This chapter describes the known mechanisms of high level drug tolerance/resistance exhibited by biofilm and its implications in areas affecting the treatment of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee KW, et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8(4):894–907.

    Article  CAS  PubMed  Google Scholar 

  2. Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–61.

    Article  CAS  PubMed  Google Scholar 

  3. Pannanusorn S, et al. Characterization of biofilm formation and the role of BCR1 in clinical isolates of Candida parapsilosis. Eukaryot Cell. 2014;13(4):438–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hoiby N, et al. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3(2):55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sardi Jde C, et al. Highlights in pathogenic fungal biofilms. Rev Iberoam Micol. 2014;31(1):22–9.

    Article  PubMed  Google Scholar 

  6. Teles R, et al. Lessons learned and unlearned in periodontal microbiology. Periodontol 2000. 2013;62(1):95–162.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murphy K, et al. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1. J Bacteriol. 2014;196(7):1306–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huertas MG, et al. The Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology. 2014;160(Pt 12):2595–606.

    Article  CAS  PubMed  Google Scholar 

  9. Chew SC, et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. MBio. 2014;5(4):e01536–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Moryl M, et al. Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm. Acta Biochim Pol. 2014;61(1):133–9.

    PubMed  Google Scholar 

  11. Irie Y, et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2012;109(50):20632–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ray VA, Driks A, Visick KL. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J Bacteriol. 2014;197(3):518–28.

    Article  PubMed  CAS  Google Scholar 

  13. Wu S, et al. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis. 2014;72(3):143–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zarnowski R, et al. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5(4):e01333–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bales PM, et al. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One. 2013;8(6):e67950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cury JA, Koo H. Extraction and purification of total RNA from Streptococcus mutans biofilms. Anal Biochem. 2007;365(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  17. Rajendran R, et al. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell. 2013;12(3):420–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jechalke S, et al. Analysis of structure, function, and activity of a benzene-degrading microbial community. FEMS Microbiol Ecol. 2013;85(1):14–26.

    Article  PubMed  Google Scholar 

  19. Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008;322:207–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hung C, et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio. 2013;4(5):e00645–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Moorthy S, Watnick PI. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol. 2005;57(6):1623–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Justice SS, et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A. 2004;101(5):1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biswas NN, et al. Indole-based novel small molecules for the modulation of bacterial signalling pathways. Org Biomol Chem. 2015;13(3):925–37.

    Article  CAS  PubMed  Google Scholar 

  24. Holm A, Vikstrom E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front Plant Sci. 2014;5:309.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mhatre E, Monterrosa RG, Kovacs AT. From environmental signals to regulators: modulation of biofilm development in gram-positive bacteria. J Basic Microbiol. 2014;54(7):616–32.

    Article  PubMed  Google Scholar 

  26. Fazli M, et al. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol. 2014;16(7):1961–81.

    Article  CAS  PubMed  Google Scholar 

  27. Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek. 2014;105(2):289–305.

    Article  PubMed  Google Scholar 

  28. Ferkinghoff-Borg J, Sams T. Size of quorum sensing communities. Mol Biosyst. 2014;10(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  29. Pradeep Kumar SS, Easwer HV, Maya Nandkumar A. Multiple drug resistant bacterial biofilms on implanted catheters—a reservoir of infection. J Assoc Physicians India. 2013;61(10):702–7.

    CAS  PubMed  Google Scholar 

  30. Weigel LM, et al. High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother. 2007;51(1):231–8.

    Article  CAS  PubMed  Google Scholar 

  31. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  32. Domenech M, et al. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun. 2013;81(7):2606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jabalameli F, et al. Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns. 2012;38(8):1192–7.

    Article  PubMed  Google Scholar 

  34. Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett. 1991;30(2):201–5.

    Article  CAS  PubMed  Google Scholar 

  35. Sadowska B, et al. The immunomodulatory activity of Staphylococcus aureus products derived from biofilm and planktonic cultures. Arch Immunol Ther Exp (Warsz). 2013;61(5):413–20.

    Article  CAS  Google Scholar 

  36. Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med. 2014. 4(10).

    Google Scholar 

  37. Biel MA, et al. Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. Int Forum Allergy Rhinol. 2011;1(5):329–34.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goodman SD, et al. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol. 2011;4(6):625–37.

    Article  CAS  PubMed  Google Scholar 

  39. Artigas J, et al. Comparative sensitivity to the fungicide tebuconazole of biofilm and plankton microbial communities in freshwater ecosystems. Sci Total Environ. 2014;468–469:326–36.

    Article  PubMed  CAS  Google Scholar 

  40. Mitra S, Sana B, Mukherjee J. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms. Adv Biochem Eng Biotechnol. 2014;146:163–205.

    PubMed  Google Scholar 

  41. Gilan I, Sivan A. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol Lett. 2013;342(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  42. Wilhelm L, et al. Microbial biodiversity in glacier-fed streams. ISME J. 2013;7(8):1651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bogino P, et al. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere. PLoS One. 2013;8(11):e79614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harriott MM, Noverr MC. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 2011;19(11):557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manavathu EK, Vager DL, Vazquez JA. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. BMC Microbiol. 2014;14:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Harriott MM, Noverr MC. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob Agents Chemother. 2010;54(9):3746–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. 2009;53(9):3914–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Monteiro DR, et al. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Med Mycol. 2014;52(6):627–35.

    Article  CAS  PubMed  Google Scholar 

  49. Fonseca E, et al. Effects of fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene expression. Biofouling. 2014;30(4):447–57.

    Article  CAS  PubMed  Google Scholar 

  50. Prazynska M, Gospodarek E. In vitro effect of amphotericin B on Candida albicans, Candida glabrata and Candida parapsilosis biofilm formation. Mycopathologia. 2014;177(1–2):19–27.

    Article  CAS  PubMed  Google Scholar 

  51. Pannanusorn S, Fernandez V, Romling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56(3):264–72.

    Article  PubMed  Google Scholar 

  52. Estivill D, et al. Biofilm formation by five species of Candida on three clinical materials. J Microbiol Methods. 2011;86(2):238–42.

    Article  CAS  PubMed  Google Scholar 

  53. Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6(3):199–210.

    Article  CAS  PubMed  Google Scholar 

  54. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  55. Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol. 2001;183(23):6746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lewis K. Persister cells and the riddle of biofilm survival. Biochemistry (Mosc). 2005;70(2):267–74.

    Article  CAS  Google Scholar 

  57. Lewis K. Persister cells: molecular mechanisms related to antibiotic tolerance. Handb Exp Pharmacol. 2012;211:121–33.

    Article  CAS  Google Scholar 

  58. Keren I, et al. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol. 2004;186(24):8172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 2006;50(11):3839–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mulcahy LR, et al. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol. 2010;192(23):6191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shah D, et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lechner S, Lewis K, Bertram R. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol. 2012;22(4):235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taff HT, et al. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013;8(10):1325–37.

    Article  CAS  PubMed  Google Scholar 

  64. Conlon BP, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013;503(7476):365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Akers KS, et al. Biofilms and persistent wound infections in United States military trauma patients: a case-control analysis. BMC Infect Dis. 2014;14:190.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Staudinger BJ, et al. Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 2014;189(7):812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013;136:1–51.

    Article  CAS  Google Scholar 

  68. Scali C, Kunimoto B. An update on chronic wounds and the role of biofilms. J Cutan Med Surg. 2013;17(6):371–6.

    PubMed  Google Scholar 

  69. Mancl KA, Kirsner RS, Ajdic D. Wound biofilms: lessons learned from oral biofilms. Wound Repair Regen. 2013;21(3):352–62.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Amato SM, Brynildsen MP. Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One. 2014;9(3):e93110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Prax M, Bertram R. Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol. 2014;4:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lewis K. Persister cells and the paradox of chronic infections. Microbe. 2010;5:429–37.

    Google Scholar 

  73. Bigger JW. Treatment of Staphylococcal infections with penicillin. Lancet. 1944;244(6320):497–500.

    Article  Google Scholar 

  74. Kristoffersen P, et al. Bacterial toxin-antitoxin gene system as containment control in yeast cells. Appl Environ Microbiol. 2000;66(12):5524–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moyed HS, Bertrand KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol. 1983;155(2):768–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. De Groote VN, et al. Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett. 2009;297(1):73–9.

    Article  PubMed  CAS  Google Scholar 

  77. Keren I, Mulcahy LR, Lewis K. Persister eradication: lessons from the world of natural products. Methods Enzymol. 2012;517:387–406.

    Article  CAS  PubMed  Google Scholar 

  78. Grant SS, et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci U S A. 2012;109(30):12147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol. 2011;14(5):593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marques CN, et al. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol. 2014;80(22):6976–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Barraud N, et al. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One. 2013;8(12):e84220.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tripathi A, et al. MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem. 2014;289(7):4191–205.

    Article  CAS  PubMed  Google Scholar 

  83. Kasari V, et al. Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli. BMC Microbiol. 2013;13:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mulcahy H, et al. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog. 2011;7(10):e1002299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Harrison JJ, et al. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology. 2005;151(Pt 10):3181–95.

    Article  CAS  PubMed  Google Scholar 

  86. Harrison JJ, Turner RJ, Ceri H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol. 2005;7(7):981–94.

    Article  CAS  PubMed  Google Scholar 

  87. Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease. Bioessays. 2014;36(10):991–6.

    Article  PubMed  Google Scholar 

  88. Lechner S, et al. Interplay between population dynamics and drug tolerance of Staphylococcus aureus persister cells. J Mol Microbiol Biotechnol. 2012;22(6):381–91.

    Article  CAS  PubMed  Google Scholar 

  89. Singh R, et al. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol. 2009;58(Pt 8):1067–73.

    Article  CAS  PubMed  Google Scholar 

  90. Van Acker H, et al. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS One. 2013;8(3):e58943.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Van Acker H, et al. Involvement of toxin-antitoxin modules in Burkholderia cenocepacia biofilm persistence. Pathog Dis. 2014;71(3):326–35.

    Article  PubMed  CAS  Google Scholar 

  92. Das T, et al. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. PLoS One. 2014;9(3):e91935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol. 2015;41(3):341–52.

    Article  CAS  PubMed  Google Scholar 

  94. Messiaen AS, Nelis H, Coenye T. Investigating the role of matrix components in protection of Burkholderia cepacia complex biofilms against tobramycin. J Cyst Fibros. 2014;13(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  95. Ali Mohammed MM, et al. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K. J Oral Microbiol. 2013;5.

    Google Scholar 

  96. Conover MS, Mishra M, Deora R. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One. 2011;6(2):e16861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harmsen M, et al. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol. 2010;76(7):2271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martins M, et al. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2010;169(5):323–31.

    Article  CAS  PubMed  Google Scholar 

  99. Vilain S, et al. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol. 2009;75(9):2861–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hall-Stoodley L, et al. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 2008;8:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ratjen F, et al. Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax. 2002;57(11):930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiao Y, et al. Identification of biofilm matrix-associated proteins from an acid mine drainage microbial community. Appl Environ Microbiol. 2011;77(15):5230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baillie GS, Douglas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother. 2000;46(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  104. McCrate OA, et al. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol. 2013;425(22):4286–94.

    Article  CAS  PubMed  Google Scholar 

  105. Marvasi M, Visscher PT, Casillas Martinez L. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol Lett. 2010;313(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  106. Chaignon P, et al. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol. 2007;75(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  107. Caubet R, et al. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother. 2004;48(12):4662–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beauvais A, et al. Aspergillus cell wall and biofilm. Mycopathologia. 2014;178(5–6):371–7.

    Article  PubMed  Google Scholar 

  109. Heilmann C. Adhesion mechanisms of staphylococci. Adv Exp Med Biol. 2011;715:105–23.

    Article  CAS  PubMed  Google Scholar 

  110. Haagensen JA, et al. In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol. 2002;42(2):261–8.

    Article  CAS  PubMed  Google Scholar 

  111. Juhas M. Horizontal gene transfer in human pathogens. Crit Rev Microbiol. 2015;41(1):101–8. doi:10.3109/1040841X.2013.

    Article  CAS  PubMed  Google Scholar 

  112. Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev. 2013;37:336–63. doi:10.1111/j.1574-6976.2012.00353.x.

    Article  CAS  PubMed  Google Scholar 

  113. Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24. doi:10.1111/j.1574-6976.2008.00150.x.

    Article  CAS  PubMed  Google Scholar 

  114. Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S. Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett. 2005;255:115–20.

    Article  CAS  Google Scholar 

  115. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol. 2005;3(9):700–10.

    Article  PubMed  CAS  Google Scholar 

  116. Griffith F. The significance of pneumococcal types. J Hyg (Lond). 1928;27(2):113–59.

    Article  CAS  Google Scholar 

  117. Aspiras MB, Ellen RP, Cvitkovitch DG. ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett. 2004;238(1):167–74.

    CAS  PubMed  Google Scholar 

  118. Babic A, et al. Direct visualization of horizontal gene transfer. Science. 2008;319(5869):1533–6.

    Article  CAS  PubMed  Google Scholar 

  119. Dunny GM, Leonard BA, Hedberg PJ. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol. 1995;177(4):871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roberts AP, et al. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett. 1999;177(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  121. Savage VJ, Chopra I, O’Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother. 2013;57(4):1968–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang D, et al. Horizontal transfer of antibiotic resistance genes in a membrane bioreactor. J Biotechnol. 2013;167(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  123. Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol. 2013;97(1):317–28.

    Article  CAS  PubMed  Google Scholar 

  124. Luo H, Wan K, Wang HH. High-frequency conjugation system facilitates biofilm formation and pAMbeta1 transmission by Lactococcus lactis. Appl Environ Microbiol. 2005;71(6):2970–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hobman JL. MerR family transcription activators: similar designs, different specificities. Mol Microbiol. 2007;63(5):1275–8.

    Article  CAS  PubMed  Google Scholar 

  126. Chambers JR, et al. BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol. 2014;92(3):471–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gupta K, et al. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol. 2014;92(3):488–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liao J, Schurr MJ, Sauer K. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol. 2013;195(15):3352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liao J, Sauer K. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol. 2012;194(18):4823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gupta K, et al. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J Bacteriol. 2013;195(21):4975–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Habash M, Reid G. Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol. 1999;39(9):887–98.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang L, Gowardman J, Rickard CM. Impact of microbial attachment on intravascular catheter-related infections. Int J Antimicrob Agents. 2011;38(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  133. Veerachamy S, et al. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H. 2014;228(10):1083–99.

    Article  PubMed  Google Scholar 

  134. Abdallah M, et al. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol. 2014;196(7):453–72.

    Article  CAS  PubMed  Google Scholar 

  135. Goldfinger Y, et al. Biofilm prevention on cochlear implants. Cochlear Implants Int. 2014;15(3):173–8.

    Article  PubMed  Google Scholar 

  136. Donlan RM. Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol. 2008;322:133–61.

    CAS  PubMed  Google Scholar 

  137. Passerini L, et al. Biofilms on indwelling vascular catheters. Crit Care Med. 1992;20(5):665–73.

    Article  CAS  PubMed  Google Scholar 

  138. Davis EM, et al. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation. Acta Biomater. 2013;9(4):6236–44.

    Article  CAS  PubMed  Google Scholar 

  139. Jacqueline C, Caillon J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother. 2014;69 Suppl 1:i37–40.

    Article  CAS  PubMed  Google Scholar 

  140. Coad BR, et al. Biomaterials surfaces capable of resisting fungal attachment and biofilm formation. Biotechnol Adv. 2014;32(2):296–307.

    Article  CAS  PubMed  Google Scholar 

  141. Mishra SK, et al. Detection of biofilm production and antibiotic resistance pattern in clinical isolates from indwelling medical devices. Curr Microbiol. 2015;70(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  142. Monteiro DR, et al. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  143. Malik A, Mohammad Z, Ahmad J. The diabetic foot infections: biofilms and antimicrobial resistance. Diabetes Metab Syndr. 2013;7(2):101–7.

    Article  PubMed  Google Scholar 

  144. Cooper RA, Bjarnsholt T, Alhede M. Biofilms in wounds: a review of present knowledge. J Wound Care. 2014;23(11):570–82.

    Article  CAS  PubMed  Google Scholar 

  145. Bertesteanu S, et al. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int J Pharm. 2014;463(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  146. Watters C, et al. Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Med Microbiol Immunol. 2013;202(2):131–41.

    Article  CAS  PubMed  Google Scholar 

  147. Percival SL, et al. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20(5):647–57.

    Article  PubMed  Google Scholar 

  148. Oates A, et al. The visualization of biofilms in chronic diabetic foot wounds using routine diagnostic microscopy methods. J Diabetes Res. 2014;2014:153586.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Harrison-Balestra C, et al. A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol Surg. 2003;29(6):631–5.

    PubMed  Google Scholar 

  150. James TJ, et al. Antioxidant characteristics of chronic wound fluid. Br J Dermatol. 2001;145(1):185–6.

    Article  CAS  PubMed  Google Scholar 

  151. Bowler PG, Davies BJ, Jones SA. Microbial involvement in chronic wound malodour. J Wound Care. 1999;8(5):216–8.

    Article  CAS  PubMed  Google Scholar 

  152. Zhao G, et al. Biofilms and inflammation in chronic wounds. Adv Wound Care (New Rochelle). 2013;2(7):389–99.

    Article  Google Scholar 

  153. McInnes RL, et al. Contrasting host immuno-inflammatory responses to bacterial challenge within venous and diabetic ulcers. Wound Repair Regen. 2014;22(1):58–69.

    Article  PubMed  Google Scholar 

  154. Nguyen KT, et al. Deficient cytokine expression and neutrophil oxidative burst contribute to impaired cutaneous wound healing in diabetic, biofilm-containing chronic wounds. Wound Repair Regen. 2013;21(6):833–41.

    Article  PubMed  Google Scholar 

  155. Tankersley A, et al. Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes. J Inflamm (Lond). 2014;11:17.

    Article  CAS  Google Scholar 

  156. Nibali L, et al. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. J Oral Microbiol. 2014;6.

    Google Scholar 

  157. Fuxman Bass JI, et al. Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J Immunol. 2010;184(11):6386–95.

    Article  CAS  PubMed  Google Scholar 

  158. Benakanakere M, Kinane DF. Innate cellular responses to the periodontal biofilm. Front Oral Biol. 2012;15:41–55.

    Article  PubMed  Google Scholar 

  159. Yucel-Lindberg T, Bage T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med. 2013;15:e7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Vazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manavathu, E.K., Vazquez, J.A. (2017). The Functional Resistance of Biofilms. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_11

Download citation

Publish with us

Policies and ethics