Skip to main content

Antifungal Targets, Mechanisms of Action, and Resistance in Candida albicans

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Antifungal resistance at the gene level has been studied in C. albicans for about a decade now. Cloning of C. albicans genes by homology to resistance genes in S. cerevisiae, and heterologous expression of C. albicans genes in S. cerevisiae has allowed rapid progress in identifying and studying the five major C. albicans genes involved in resistance to clinically used antifungals: ABC transporter genes CDR1 and CDR2, major facilitator efflux gene MDR1, and ergosterol biosynthesis genes ERG11 and ERG3. Analysis of these genes indicates that resistance involves alterations to the enzyme targeted by FLZ, encoded by ERG11, and upregulation of P-glycoprotein-type ABC transporters and major facilitators (MFS) that probably efflux azoles, terbinafine, and perhaps caspofungin. Potential alterations to ERG3 or its regulation have been understudied in C. albicans. Resistant isolates from clinical samples, especially in oropharyngeal candidiasis (OPC), typically display stepwise mutations in more than one of these genes. However, it is clear from in vivo and in vitro studies that mutations of these major genes do not completely account for the evolution of high-level azole resistance in some clinical isolates. More work is needed that is independent of heterologous studies in S. cerevisiae, to identify other genes that contribute to resistance in C. albicans. Very little is understood about reversible, adaptive resistance of C. albicans, despite its potential clinical significance. Most clinical failures to control non-OPC infections occur with in vitro-susceptible strains. There has been important discovery of tolerance mechanisms to azoles. Heterologous studies in S. cerevisiae on regulation of target genes have been less useful, due to differences in regulation in C. albicans. Nevertheless, recent has progress has been made in identifying genes that regulate CDR1 or ERG genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loeffler J, Stevens DA. Antifungal drug resistance. Clin Infect Dis. 2003;36:S31–41.

    Article  CAS  PubMed  Google Scholar 

  2. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 1999;12:501–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett. 1997;149:141–9.

    Article  CAS  PubMed  Google Scholar 

  4. Iwata K. Drug resistance in human pathogenic fungi. Eur J Epidemiol. 1992;8(3):407–21.

    Article  CAS  PubMed  Google Scholar 

  5. Lamb D, Kelly D, Kelly S. Molecular aspects of azole antifungal action and resistance. Drug Resist Updat. 1999;2:390–402.

    Article  CAS  PubMed  Google Scholar 

  6. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11:382–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanglard D. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol. 2002;5(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  8. Vanden Bossche H, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D. Antifungal drug resistance in pathogenic fungi. Med Mycol. 1998;36 Suppl 1:119–28.

    CAS  PubMed  Google Scholar 

  9. Vanden Bossche H, Marichal P, Odds FC. Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 1994;2(10):393–400.

    Article  CAS  PubMed  Google Scholar 

  10. Sanglard D, Bille J. Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. In: Calderon RA, editor. Candida and Candidiasis. Washington, DC: ASM Press; 2002. p. 349–83.

    Google Scholar 

  11. Casalinuovo IA, Di Francesco P, Garaci E. Fluconazole resistance in Candida albicans: a review of mechanisms. Eur Rev Med Pharmacol Sci. 2004;8:69–77.

    CAS  PubMed  Google Scholar 

  12. Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis. 2002;2:73–85.

    Article  CAS  PubMed  Google Scholar 

  13. Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FC, Odds FC, Bossche HV. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans [In Process Citation]. Microbiology. 1999;145:2701–13.

    Article  CAS  PubMed  Google Scholar 

  14. Prasad R, Kapoor K. Multidrug resistance in yeast Candida. Int Rev Cytol. 2005;242:215–48.

    Article  CAS  PubMed  Google Scholar 

  15. Houten SM, Waterham HR. Nonorthologous gene displacement of phosphomevalonate kinase. Mol Genet Metab. 2001;72:273–6.

    Article  CAS  PubMed  Google Scholar 

  16. Tsay YH, Robinson GW. Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Mol Cell Biol. 1991;11:620–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol. 2003;50:167–81.

    Article  CAS  PubMed  Google Scholar 

  18. Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE. Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun. 1995;207:910–5.

    Article  CAS  PubMed  Google Scholar 

  19. Watson PF, Rose ME, Ellis SW, England H, Kelly SL. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun. 1989;164:1170–5.

    Article  CAS  PubMed  Google Scholar 

  20. Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R, Koegel C, Loper JC. Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids. 1993;28:963–7.

    Article  CAS  PubMed  Google Scholar 

  21. Shimokawa O, Kato Y, Nakayama H. Increased drug sensitivity in Candida albicans cells accumulating 14-methylated sterols. J Med Vet Mycol. 1986;24:481–3.

    Article  CAS  PubMed  Google Scholar 

  22. Bard M, Lees ND, Barbuch RJ, Sanglard D. Characterization of a cytochrome P450 deficient mutant of Candida albicans. Biochem Biophys Res Commun. 1987;147:794–800.

    Article  CAS  PubMed  Google Scholar 

  23. Shimokawa O, Nakayama H. A Candida albicans mutant conditionally defective in sterol 14 alpha-demethylation. J Med Vet Mycol. 1989;27:121–5.

    Article  CAS  PubMed  Google Scholar 

  24. Chau AS, Mendrick CA, Sabatelli FJ, Loebenberg D, McNicholas PM. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother. 2004;48:2124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao L, Madison V, Chau AS, Loebenberg D, Palermo RE, McNicholas PM. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother. 2004;48:568–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fukuoka T, Johnston DA, Winslow CA, de Groot MJ, Burt C, Hitchcock CA, Filler SG. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother. 2003;47:1213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji H, Zhang W, Zhou Y, Zhang M, Zhu J, Song Y, Lu J. A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem. 2000;43:2493–505.

    Article  CAS  PubMed  Google Scholar 

  28. Ji H, Zhang W, Zhang M, Kudo M, Aoyama Y, Yoshida Y, Sheng C, Song Y, Yang S, Zhou Y, et al. Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J Med Chem. 2003;46:474–85.

    Article  CAS  PubMed  Google Scholar 

  29. Macchiarulo A, Costantino G, Fringuelli D, Vecchiarelli A, Schiaffella F, Fringuelli R. 1,4-Benzothiazine and 1,4-benzoxazine imidazole derivatives with antifungal activity: a docking study. Bioorg Med Chem. 2002;10:3415–23.

    Article  CAS  PubMed  Google Scholar 

  30. Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother. 1998;42:241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kontoyiannis DP, Sagar N, Hirschi KD. Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1999;43(11):2798–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, Van Broeckhoven C, Fay S, Mose-Larsen P. Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1997;41:2229–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. van den Bossche H, Marichal P, Odds FC, Le Jeune L, Coene MC. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 1992;36:2602–10.

    Article  Google Scholar 

  34. Perepnikhatka V, Fischer FJ, Niimi M, Baker RA, Cannon RD, Wang YK, Sherman F, Rustchenko E. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J Bacteriol. 1999;181:4041–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rustad TR, Stevens DA, Pfaller MA, White TC. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology. 2002;148(Pt 4):1061–72.

    Article  CAS  PubMed  Google Scholar 

  36. Du W, Coaker M, Sobel JD, Akins RA. Shuttle vectors for Candida albicans: control of plasmid copy number and elevated expression of cloned genes. Curr Genet. 2004;45(6):390–8. Epub 2004 Mar 18.

    Article  CAS  PubMed  Google Scholar 

  37. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother. 2003;47(8):2404–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC. Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA. 1987;6:529–37.

    Article  CAS  PubMed  Google Scholar 

  39. Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE, Kwon-Chung KJ, Bennett JE. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother. 1995;39:2708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jackson CJ, Lamb DC, Manning NJ, Kelly DE, Kelly SL. Mutations in Saccharomyces cerevisiae sterol C5-desaturase conferring resistance to the CYP51 inhibitor fluconazole. Biochem Biophys Res Commun. 2003;309:999–1004.

    Article  CAS  PubMed  Google Scholar 

  41. Smith SJ, Crowley JH, Parks LW. Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1996;16:5427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ryder NS, Wagner S, Leitner I. In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother. 1998;42:1057–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryder NS. Activity of terbinafine against serious fungal pathogens. Mycoses. 1999;42:115–9.

    CAS  PubMed  Google Scholar 

  44. Jessup CJ, Ryder NS, Ghannoum MA. An evaluation of the in vitro activity of terbinafine. Med Mycol. 2000;38:161–8.

    Article  Google Scholar 

  45. Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother. 2003;47(3):956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol. 2003;48(4):959–76.

    Article  CAS  PubMed  Google Scholar 

  47. Hiratani T, Yamaguchi H. Cross-resistance of Candida albicans to several different families of antifungals with ergosterol biosynthesis-inhibiting activity. Jpn J Antibiot. 1994;47(2):125–8.

    CAS  PubMed  Google Scholar 

  48. Klobucnikova V, Kohut P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I. Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Biophys Res Commun. 2003;309(3):666–71.

    Article  CAS  PubMed  Google Scholar 

  49. Leber R, Fuchsbichler S, Klobucnikova V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, et al. Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2003;47(12):3890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leber R, Landl K, Zinser E, Ahorn H, Spok A, Kohlwein SD, Turnowsky F, Daum G. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell. 1998;9(2):375–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Henry KW, Nickels JT, Edlind TD. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors [In Process Citation]. Antimicrob Agents Chemother. 2000;44:2693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP. Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob Agents Chemother. 2004;48(7):2490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Graminha MA, Rocha EM, Prade RA, Martinez-Rossi NM. Terbinafine resistance mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans. Antimicrob Agents Chemother. 2004;48(9):3530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143:405–16.

    Article  CAS  PubMed  Google Scholar 

  55. Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents. 2003;22:291–300.

    Article  CAS  PubMed  Google Scholar 

  56. Schuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K. The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol. 2003;48(1):225–35.

    Article  CAS  PubMed  Google Scholar 

  57. Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother. 1996;40:2300–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wirsching S, Moran GP, Sullivan DJ, Coleman DC, Morschhauser J. MDR1-mediated drug resistance in Candida dubliniensis. Antimicrob Agents Chemother. 2001;45:3416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R. Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother. 2004;48:1778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsai HF, Bard M, Izumikawa K, Krol AA, Sturm AM, Culbertson NT, Pierson CA, Bennett JE. Candida glabrata erg1 mutant with increased sensitivity to azoles and to low oxygen tension. Antimicrob Agents Chemother. 2004;48(7):2483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogers KM, Pierson CA, Culbertson NT, Mo C, Sturm AM, Eckstein J, Barbuch R, Lees ND, Bard M. Disruption of the Candida albicans CYB5 gene results in increased azole sensitivity. Antimicrob Agents Chemother. 2004;48(9):3425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jain P, Akula I, Edlind T. Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother. 2003;47:3195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol. 1989;9(8):3447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kleinhans FW, Lees ND, Bard M, Haak RA, Woods RA. ESR determinations of membrane permeability in a yeast sterol mutant. Chem Phys Lipids. 1979;23:143–54.

    Article  PubMed  Google Scholar 

  65. Bard M, Lees ND, Burrows LS, Kleinhans FW. Differences in crystal violet uptake and cation-induced death among yeast sterol mutants. J Bacteriol. 1978;135:1146–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Welihinda AA, Beavis AD, Trumbly RJ. Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochim Biophys Acta. 1994;1193:107–17.

    Article  CAS  PubMed  Google Scholar 

  67. Jensen-Pergakes KL, Kennedy MA, Lees ND, Barbuch R, Koegel C, Bard M. Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene: drug susceptibility studies in erg6 mutants. Antimicrob Agents Chemother. 1998;42:1160–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaur R, Bachhawat AK. The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology. 1999;145:809–18.

    Article  CAS  PubMed  Google Scholar 

  69. Parks LW, Smith SJ, Crowley JH. Biochemical and physiological effects of sterol alterations in yeast—a review. Lipids. 1995;30:227–30.

    Article  CAS  PubMed  Google Scholar 

  70. Crowley JH, Tove S, Parks LW. A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae. Curr Genet. 1998;34:93–9.

    Article  CAS  PubMed  Google Scholar 

  71. Oh CS, Toke DA, Mandala S, Martin CE. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem. 1997;272:17376–84.

    Article  CAS  PubMed  Google Scholar 

  72. Stolz J, Sauer N. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter. J Biol Chem. 1999;274:18747–52.

    Article  CAS  PubMed  Google Scholar 

  73. Jia N, Arthington-Skaggs B, Lee W, Pierson CA, Lees ND, Eckstein J, Barbuch R, Bard M. Candida albicans sterol C-14 reductase, encoded by the ERG24 gene, as a potential antifungal target site. Antimicrob Agents Chemother. 2002;46:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gachotte D, Pierson CA, Lees ND, Barbuch R, Koegel C, Bard M. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc Natl Acad Sci U S A. 1997;94:11173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kennedy MA, Johnson TA, Lees ND, Barbuch R, Eckstein JA, Bard M. Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Pediatr Infect Dis J. 2000;19:319–24.

    Article  Google Scholar 

  76. Nose H, Fushimi H, Seki A, Sasaki T, Watabe H, Hoshiko S. PF1163A, a novel antifungal agent, inhibit ergosterol biosynthesis at C-4 sterol methyl oxidase. J Antibiot (Tokyo). 2002;55:969–74.

    Article  CAS  Google Scholar 

  77. Nose H, Seki A, Yaguchi T, Hosoya A, Sasaki T, Hoshiko S, Shomura T. PF1163A and B, new antifungal antibiotics produced by Penicillium sp. I. Taxonomy of producing strain, fermentation, isolation and biological activities. J Antibiot (Tokyo). 2000;53:33–7.

    Article  CAS  Google Scholar 

  78. Bujdakova H, Kral’ova K, Sidoova E. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzothiazolylaminomethyl)-2-benzoxazolinethi ones. Pharmazie. 1995;50:156.

    CAS  PubMed  Google Scholar 

  79. Bujdakova H, Kuchta T, Sidoova E, Gvozdjakova A. Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett. 1993;112:329–33.

    Article  CAS  PubMed  Google Scholar 

  80. Kuchta T, Leka C, Farkas P, Bujdakova H, Belajova E, Russell NJ. Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent. Antimicrob Agents Chemother. 1995;39:1538–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuchta T, Bartkova K, Kubinec R. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthiobenzothiazole. Biochem Biophys Res Commun. 1992;189:85–91.

    Article  CAS  PubMed  Google Scholar 

  82. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425–30.

    Article  CAS  PubMed  Google Scholar 

  83. Basson ME, Thorsness M, Rine J. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A. 1986;83:5563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Casey WM, Keesler GA, Parks LW. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1992;174:7283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol. 1998;49:66–71.

    Article  CAS  PubMed  Google Scholar 

  86. Bard M, Lees ND, Burnett AS, Parker RA. Isolation and characterization of mevinolin resistant mutants of Saccharomyces cerevisiae. J Gen Microbiol. 1988;134:1071–8.

    CAS  PubMed  Google Scholar 

  87. Song JL, Lyons CN, Holleman S, Oliver BG, White TC. Antifungal activity of fluconazole in combination with lovastatin and their effects on gene expression in the ergosterol and prenylation pathways in Candida albicans. Med Mycol. 2003;41:417–25.

    Article  CAS  PubMed  Google Scholar 

  88. Lorenz RT, Parks LW. Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1990;34:1660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dimster-Denk D, Rine J, Phillips J, Scherer S, Cundiff P, DeBord K, Gilliland D, Hickman S, Jarvis A, Tong L, et al. Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix(TM). J Lipid Res. 1999;40:850–60.

    CAS  PubMed  Google Scholar 

  90. Song JL, White TC. RAM2: an essential gene in the prenylation pathway of Candida albicans. Microbiology. 2003;149:249–59.

    Article  CAS  PubMed  Google Scholar 

  91. Brutyan RA, McPhie P. On the one-sided action of amphotericin B on lipid bilayer membranes. J Gen Physiol. 1996;107:69–78.

    Article  CAS  PubMed  Google Scholar 

  92. Langlet J, Berges J, Caillet J, Demaret JP. Theoretical study of the complexation of amphotericin B with sterols. Biochim Biophys Acta. 1994;1191:79–93.

    Article  CAS  PubMed  Google Scholar 

  93. Vazquez JA, Arganoza MT, Boikov D, Yoon S, Sobel JD, Akins RA. Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles [In Process Citation]. J Clin Microbiol. 1998;36:2690–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vazquez JA, Arganoza MT, Vaishampayan JK, Akins RA. In vitro interaction between amphotericin B and azoles in Candida albicans. Antimicrob Agents Chemother. 1996;40:2511–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lewis RE, Prince RA, Chi J, Kontoyiannis DP. Itraconazole preexposure attenuates the efficacy of subsequent Amphotericin B therapy in a murine model of acute invasive pulmonary Aspergillosis. Antimicrob Agents Chemother. 2002;46:3208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sokol-Anderson M, Sligh Jr JE, Elberg S, Brajtburg J, Kobayashi GS, Medoff G. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother. 1988;32:702–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kelly SL, Lamb DC, Kelly DE, Loeffler J, Einsele H. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients [letter]. Lancet. 1996;348:1523–4.

    Article  CAS  PubMed  Google Scholar 

  98. Kelly SL, Lamb DC, Kelly DE, Manning NJ, Loeffler J, Hebart H, Schumacher U, Einsele H. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 1997;400:80–2.

    Article  CAS  PubMed  Google Scholar 

  99. Nolte FS, Parkinson T, Falconer DJ, Dix S, Williams J, Gilmore C, Geller R, Wingard JR. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother. 1997;41(1):196–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. O’Keeffe J, Kavanagh K. Adriamycin alters the expression of drug efflux pumps and confers amphotericin B tolerance in Candida albicans. Anticancer Res. 2004;24(2A):405–8.

    PubMed  Google Scholar 

  101. Gale EF, Johnson AM, Kerridge D, Koh TY. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth. J Gen Microbiol. 1975;87:20–36.

    Article  CAS  PubMed  Google Scholar 

  102. Gale EF, Ingram J, Kerridge D, Notario V, Wayman F. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol. 1980;117:383–91.

    CAS  PubMed  Google Scholar 

  103. Gale EF, Johnson AM, Kerridge D, Wayman F. Phenotypic resistance to miconazole and amphotericin B in Candida albicans. J Gen Microbiol. 1980;117:535–8.

    CAS  PubMed  Google Scholar 

  104. Cassone A, Kerridge D, Gale EF. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol. 1979;110:339–49.

    Article  CAS  PubMed  Google Scholar 

  105. Yoon SA, Vazquez JA, Steffan PE, Sobel JD, Akins RA. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob Agents Chemother. 1999;43:836–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Seo K, Akiyoshi H, Ohnishi Y. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol. 1999;43(11):1017–25.

    Article  CAS  PubMed  Google Scholar 

  107. Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother. 2004;54:376–85.

    Article  CAS  PubMed  Google Scholar 

  108. Dimster-Denk D, Thorsness MK, Rine J. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol Biol Cell. 1994;5:655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soustre I, Dupuy PH, Silve S, Karst F, Loison G. Sterol metabolism and ERG2 gene regulation in the yeast Saccharomyces cerevisiae. FEBS Lett. 2000;470(2):102–6.

    Article  CAS  PubMed  Google Scholar 

  110. Kennedy MA, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 1999;1445:110–22.

    Article  CAS  PubMed  Google Scholar 

  111. Kennedy MA, Bard M. Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae. Biochim Biophys Acta. 2001;1517(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  112. Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M. Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett. 1996;392:161–5.

    Article  CAS  PubMed  Google Scholar 

  113. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67:2982–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hornby JM, Nickerson KW. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother. 2004;48:2305–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother. 2003;47:2366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pierson CA, Eckstein J, Barbuch R, Bard M. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans. Med Mycol. 2004;42:385–9.

    Article  CAS  PubMed  Google Scholar 

  117. Smith WL, Edlind TD. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother. 2002;46(11):3532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song JL, Harry JB, Eastman RT, Oliver BG, White TC. The Candida albicans lanosterol 14-alpha-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother. 2004;48:1136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother. 2001;45:1660–70.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Karababa M, Coste AT, Rognon B, Bille J, Sanglard D. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother. 2004;48:3064–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cowen LE, Nantel A, Whiteway MS, Thomas DY, Tessier DC, Kohn LM, Anderson JB. Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci U S A. 2002;99(14):9284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother. 2003;47(4):1220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barker KS, Pearson MM, Rogers PD. Identification of genes differentially expressed in association with reduced azole susceptibility in Saccharomyces cerevisiae. J Antimicrob Chemother. 2003;51:1131–40.

    Article  CAS  PubMed  Google Scholar 

  124. Silver PM, Oliver BG, White TC. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell. 2004;3:1391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Henry KW, Nickels JT, Edlind TD. ROX1 and ERG Regulation in Saccharomyces cerevisiae: implications for antifungal susceptibility. Eukaryot Cell. 2002;1:1041–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lo HJ, Wang JS, Lin CY, Chen CG, Hsiao TY, Hsu CT, Su CL, Fann MJ, Ching YT, Yang YL. Efg1 involved in drug resistance by regulating the expression of ERG3 in Candida albicans. Antimicrob Agents Chemother. 2005;49:1213–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lewis RE, Lo HJ, Raad II, Kontoyiannis DP. Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother. 2002;46:1153–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90:939–49.

    Article  CAS  PubMed  Google Scholar 

  129. Stoldt VR, Sonneborn A, Leuker CE, Ernst JF. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 1997;16:1982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. van den Hazel HB, Pichler H, do Valle Matta MA, Leitner E, Goffeau A, Daum G. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. J Biol Chem. 1999;274(4):1934–41.

    Google Scholar 

  131. Prasad R, De Wergifosse P, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995;27:320–9.

    Article  CAS  PubMed  Google Scholar 

  132. Krishnamurthy S, Chatterjee U, Gupta V, Prasad R, Das P, Snehlata P, Hasnain SE, Prasad R. Deletion of transmembrane domain 12 of CDR1, a multidrug transporter from Candida albicans, leads to altered drug specificity: expression of a yeast multidrug transporter in baculovirus expression system. Yeast. 1998;14:535–50.

    Article  CAS  PubMed  Google Scholar 

  133. Niimi M, Niimi K, Takano Y, Holmes AR, Fischer FJ, Uehara Y, Cannon RD. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Chemother. 2004;54:999–1006.

    Article  CAS  PubMed  Google Scholar 

  134. Bauer BE, Wolfger H, Kuchler K. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta. 1999;1461:217–36.

    Article  CAS  PubMed  Google Scholar 

  135. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A. 2004;101:7329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nakamura K, Niimi M, Niimi K, Holmes AR, Yates JE, Decottignies A, Monk BC, Goffeau A, Cannon RD. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother. 2001;45:3366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother. 1998;42:2932–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother. 1997;41:1488–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Maebashi K, Niimi M, Kudoh M, Fischer FJ, Makimura K, Niimi K, Piper RJ, Uchida K, Arisawa M, Cannon RD, et al. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J Antimicrob Chemother. 2001;47(5):527–36.

    Article  CAS  PubMed  Google Scholar 

  140. White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother. 2002;46(6):1704–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Anderson JB, Sirjusingh C, Parsons AB, Boone C, Wickens C, Cowen LE, Kohn LM. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics. 2003;163(4):1287–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cowen LE, Sanglard D, Calabrese D, Sirjusingh C, Anderson JB, Kohn LM. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol. 2000;182:1580–91.

    Article  Google Scholar 

  143. Balan I, Alarco AM, Raymond M. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol. 1997;179(23):7210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Franz R, Michel S, Morschhäuser J. A fourth gene from the Candida albicans CDR family of ABC transporters. Curr Microbiol. 1998;37:359–61.

    Article  Google Scholar 

  145. Jha S, Dabas N, Karnani N, Saini P, Prasad R. ABC multidrug transporter Cdr1p of Candida albicans has divergent nucleotide-binding domains which display functional asymmetry. FEMS Yeast Res. 2004;5:63–72.

    Article  CAS  PubMed  Google Scholar 

  146. Shukla S, Ambudkar SV, Prasad R. Substitution of threonine-1351 in the multidrug transporter Cdr1p of Candida albicans results in hypersusceptibility to antifungal agents and threonine-1351 is essential for synergic effects of calcineurin inhibitor FK520. J Antimicrob Chemother. 2004;54:38–45.

    Article  CAS  PubMed  Google Scholar 

  147. Egner R, Bauer BE, Kuchler K. The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol. 2000;35:1255–63.

    Article  CAS  PubMed  Google Scholar 

  148. Maesaki S, Marichal P, Vanden Bossche H, Sanglard D, Kohno S. Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. J Antimicrob Chemother. 1999;44:27–31.

    Article  CAS  PubMed  Google Scholar 

  149. Shukla S, Saini P, Smriti JS, Ambudkar SV, Prasad R. Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot Cell. 2003;2:1361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gauthier C, Weber S, Alarco AM, Alqawi O, Daoud R, Georges E, Raymond M. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters. Antimicrob Agents Chemother. 2003;47(5):1543–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Moosa MY, Sobel JD, Elhalis H, Du W, Akins RA. Fungicidal activity of fluconazole against Candida albicans in a synthetic vagina-simulative medium. Antimicrob Agents Chemother. 2004;48:161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wada S, Niimi M, Niimi K, Holmes AR, Monk BC, Cannon RD, Uehara Y. Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem. 2002;277:46809–21.

    Article  CAS  PubMed  Google Scholar 

  153. Wada S, Tanabe K, Yamazaki A, Niimi M, Uehara Y, Niimi K, Lamping E, Cannon RD, Monk BC. Phosphorylation of Candida glabrata ATP-binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability. J Biol Chem. 2005;280:94–103.

    Article  CAS  PubMed  Google Scholar 

  154. Sauna ZE, Peng XH, Nandigama K, Tekle S, Ambudkar SV. The molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1). Mol Pharmacol. 2004;65:675–84.

    Article  CAS  PubMed  Google Scholar 

  155. Loo TW, Clarke DM. Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism. J Natl Cancer Inst. 2000;92:898–902.

    Article  CAS  PubMed  Google Scholar 

  156. Shukla S, Sauna ZE, Prasad R, Ambudkar SV. Disulfiram is a potent modulator of multidrug transporter Cdr1p of Candida albicans. Biochem Biophys Res Commun. 2004;322:520–5.

    Article  CAS  PubMed  Google Scholar 

  157. Krishnamurthy S, Gupta V, Prasad R, Panwar SL. Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. FEMS Microbiol Lett. 1998;160:191–7.

    Article  CAS  PubMed  Google Scholar 

  158. Hernaez ML, Gil C, Pla J, Nombela C. Induced expression of the Candida albicans multidrug resistance gene CDR1 in response to fluconazole and other antifungals. Yeast. 1998;14:517–26.

    Article  CAS  PubMed  Google Scholar 

  159. Puri N, Krishnamurthy S, Habib S, Hasnain SE, Goswami SK, Prasad R. CDR1, a multidrug resistance gene from Candida albicans, contains multiple regulatory domains in its promoter and the distal AP-1 element mediates its induction by miconazole. FEMS Microbiol Lett. 1999;180:213–9.

    Article  CAS  PubMed  Google Scholar 

  160. Gaur NA, Puri N, Karnani N, Mukhopadhyay G, Goswami SK, Prasad R. Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans. FEMS Yeast Res. 2004;4:389–99.

    Article  CAS  PubMed  Google Scholar 

  161. de Micheli M, Bille J, Schueller C, Sanglard D. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol Microbiol. 2002;43(5):1197–214.

    Article  PubMed  Google Scholar 

  162. Karnani N, Gaur NA, Jha S, Puri N, Krishnamurthy S, Goswami SK, Mukhopadhyay G, Prasad R. SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter. Yeast. 2004;21:219–39.

    Article  CAS  PubMed  Google Scholar 

  163. Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell. 2004;3:1639–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chen CG, Yang YL, Shih HI, Su CL, Lo HJ. CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob Agents Chemother. 2004;48:4505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Alarco AM, Balan I, Talibi D, Mainville N, Raymond M. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem. 1997;272(31):19304–13.

    Article  CAS  PubMed  Google Scholar 

  166. Alarco AM, Raymond M. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol. 1999;181(3):700–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet. 1994;244(5):501–11.

    Article  CAS  PubMed  Google Scholar 

  168. Katzmann DJ, Burnett PE, Golin J, Mahe Y, Moye-Rowley WS. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol. 1994;14(7):4653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem. 1987;262(35):16871–9.

    CAS  PubMed  Google Scholar 

  170. Meyers S, Schauer W, Balzi E, Wagner M, Goffeau A, Golin J. Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr Genet. 1992;21(6):431–6.

    Article  CAS  PubMed  Google Scholar 

  171. Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem. 1994;269(3):2206–14.

    CAS  PubMed  Google Scholar 

  172. Talibi D, Raymond M. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol. 1999;181(1):231–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang X, Talibi D, Weber S, Poisson G, Raymond M. Functional isolation of the Candida albicans FCR3 gene encoding a bZip transcription factor homologous to Saccharomyces cerevisiae Yap3p. Yeast. 2001;18(13):1217–25.

    Article  CAS  PubMed  Google Scholar 

  174. Hallstrom TC, Katzmann DJ, Torres RJ, Sharp WJ, Moye-Rowley WS. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18(3):1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim DY, Song WY, Yang YY, Lee Y. The role of PDR13 in tolerance to high copper stress in budding yeast. FEBS Lett. 2001;508:99–102.

    Article  CAS  PubMed  Google Scholar 

  176. Hallstrom TC, Moye-Rowley WS. Hyperactive forms of the Pdr1p transcription factor fail to respond to positive regulation by the hsp70 protein Pdr13p. Mol Microbiol. 2000;36(2):402–13.

    Article  CAS  PubMed  Google Scholar 

  177. Michimoto T, Aoki T, Toh-e A, Kikuchi Y. Yeast Pdr13p and Zuo1p molecular chaperones are new functional Hsp70 and Hsp40 partners. Gene. 2000;257:131–7.

    Article  CAS  PubMed  Google Scholar 

  178. Eisenman HC, Craig EA. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1. Mol Microbiol. 2004;53:335–44.

    Article  CAS  PubMed  Google Scholar 

  179. Aleman C, Annereau JP, Liang XJ, Cardarelli CO, Taylor B, Yin JJ, Aszalos A, Gottesman MM. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res. 2003;63:3084–91.

    CAS  PubMed  Google Scholar 

  180. Luker GD, Pica CM, Kumar AS, Covey DF, Piwnica-Worms D. Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains. Biochemistry. 2000;39:7651–61.

    Article  CAS  PubMed  Google Scholar 

  181. Troost J, Lindenmaier H, Haefeli WE, Weiss J. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol Pharmacol. 2004;66:1332–9.

    Article  CAS  PubMed  Google Scholar 

  182. Ghetie MA, Marches R, Kufert S, Vitetta ES. An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (MDR) lymphoma cell line. Blood. 2004;104:178–83.

    Article  CAS  PubMed  Google Scholar 

  183. Malinska K, Malinsky J, Opekarova M, Tanner W. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci. 2004;117:6031–41.

    Article  CAS  PubMed  Google Scholar 

  184. Li Y, Prinz WA. ATP-binding cassette (ABC) transporters mediate nonvesicular, raft-modulated sterol movement from the plasma membrane to the endoplasmic reticulum. J Biol Chem. 2004;279:45226–34.

    Article  CAS  PubMed  Google Scholar 

  185. Hearn JD, Lester RL, Dickson RC. The uracil transporter Fur4p associates with lipid rafts. J Biol Chem. 2003;278:3679–86.

    Article  CAS  PubMed  Google Scholar 

  186. Bagnat M, Chang A, Simons K. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell. 2001;12:4129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A. 2000;97:3254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem. 2000;275:2191–8.

    Article  CAS  PubMed  Google Scholar 

  189. Malinska K, Malinsky J, Opekarova M, Tanner W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell. 2003;14:4427–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dogra S, Krishnamurthy S, Gupta V, Dixit BL, Gupta CM, Sanglard D, Prasad R. Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast. 1999;15(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  191. Smriti Krishnamurthy SS, Prasad R. Membrane fluidity affects functions of Cdr1p, a multidrug ABC transporter of Candida albicans [published erratum appears in FEMS Microbiol Lett. 1999;176(1):263]. FEMS Microbiol Lett. 1999;173:475–81.

    Article  PubMed  Google Scholar 

  192. Mukhopadhyay K, Kohli A, Prasad R. Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother. 2002;46:3695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kohli A, Smriti Mukhopadhyay K, Rattan A, Prasad R. In vitro low-level resistance to azoles in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother. 2002;46:1046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sa-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol. 2002;98:215–26.

    Article  CAS  PubMed  Google Scholar 

  195. Ben-Yaacov R, Knoller S, Caldwell GA, Becker JM, Koltin Y. Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene. Antimicrob Agents Chemother. 1994;38:648–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Fling ME, Kopf J, Tamarkin A, Gorman JA, Smith HA, Koltin Y. Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet. 1991;227:318–29.

    Article  CAS  PubMed  Google Scholar 

  197. Kohli A, Gupta V, Krishnamurthy S, Hasnain SE, Prasad R. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. J Biosci. 2001;26:333–9.

    Article  CAS  PubMed  Google Scholar 

  198. Morschhauser J, Michel S, Staib P. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol. 1999;32(3):547–56.

    Article  CAS  PubMed  Google Scholar 

  199. Calabrese D, Bille J, Sanglard D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology. 2000;146(Pt 11):2743–54.

    Article  CAS  PubMed  Google Scholar 

  200. Gupta V, Kohli A, Krishnamurthy S, Puri N, Aalamgeer SA, Panwar S, Prasad R. Identification of polymorphic mutant alleles of CaMDR1, a major facilitator of Candida albicans which confers multidrug resistance, and its in vitro transcriptional activation. Curr Genet. 1998;34:192–9.

    Article  CAS  PubMed  Google Scholar 

  201. Wirsching S, Michel S, Kohler G, Morschhauser J. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol. 2000;182(2):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hooshdaran MZ, Barker KS, Hilliard GM, Kusch H, Morschhauser J, Rogers PD. Proteomic analysis of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother. 2004;48:2733–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kusch H, Biswas K, Schwanfelder S, Engelmann S, Rogers PD, Hecker M, Morschhauser J. A proteomic approach to understanding the development of multidrug-resistant Candida albicans strains. Mol Genet Genomics. 2004;271:554–65.

    Article  CAS  PubMed  Google Scholar 

  204. Krcmery V, Huttova M, Mateicka F, Laho L, Jurga L, Ondrusova A, Tarekova Z, Kralinsky K, Hanzen J, Liskova A, et al. Breakthrough fungaemia in neonates and infants caused by Candida albicans and Candida parapsilosis susceptible to fluconazole in vitro. J Antimicrob Chemother. 2001;48:521–5.

    Article  CAS  PubMed  Google Scholar 

  205. Sobel JD, Zervos M, Reed BD, Hooton T, Soper D, Nyirjesy P, Heine MW, Willems J, Panzer H. Fluconazole susceptibility of vaginal isolates obtained from women with complicated Candida vaginitis: clinical implications. Antimicrob Agents Chemother. 2003;47(1):34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Maxwell MJ, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Diekema DJ, Pfaller MA. Evaluation of Etest method for determining fluconazole and voriconazole MICs for 279 clinical isolates of Candida species infrequently isolated from blood. J Clin Microbiol. 2003;41:1087–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Diekema DJ, Messer SA, Brueggemann AB, Coffman SL, Doern GV, Herwaldt LA, Pfaller MA. Epidemiology of candidemia: 3-year results from the emerging infections and the epidemiology of Iowa organisms study. J Clin Microbiol. 2002;40:1298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Pfaller MA, Diekema DJ, Jones RN, Messer SA, Hollis RJ. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J Clin Microbiol. 2002;40:852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pfaller MA, Diekema DJ, Jones RN, Sader HS, Fluit AC, Hollis RJ, Messer SA. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol. 2001;39:3254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pfaller MA, Diekema DJ. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol. 2004;42:4419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Pfaller MA, Diekema DJ. Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect. 2004;10 Suppl 1:11–23.

    Article  CAS  PubMed  Google Scholar 

  212. Kovacicova G, Mateicka F, Hanzen J, Liskova A, Sabo A, Szovenyova Z, Chmelik B, Huttova M, Krcmery V. Breakthrough Candidaemias during empirical therapy with fluconazole in non-cancer and non-HIV adults caused by in vitro-susceptible Candida spp.: report of 33 cases. Scand J Infect Dis. 2001;33(10):749–51.

    Article  CAS  PubMed  Google Scholar 

  213. Nucci M, Colombo AL. Risk factors for breakthrough candidemia. Eur J Clin Microbiol Infect Dis. 2002;21(3):209–11.

    Article  CAS  PubMed  Google Scholar 

  214. Uzun O, Ascioglu S, Anaissie EJ, Rex JH. Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia. Clin Infect Dis. 2001;32(12):1713–7. Epub 2001 May 7.

    Article  CAS  PubMed  Google Scholar 

  215. Sobel JD. Treatment of vaginal Candida infections. Expert Opin Pharmacother. 2002;3(8):1059–65.

    Article  CAS  PubMed  Google Scholar 

  216. Pfaller MA, Rhine-Chalberg J, Redding SW, Smith J, Farinacci G, Fothergill AW, Rinaldi MG. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J Clin Microbiol. 1994;32:59–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59:91–5.

    Article  CAS  PubMed  Google Scholar 

  218. Sobel JD, Wiesenfeld HC, Martens M, Danna P, Hooton TM, Rompalo A, Sperling M, Livengood III C, Horowitz B, Von Thron J, et al. Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. N Engl J Med. 2004;351:876–83.

    Article  CAS  PubMed  Google Scholar 

  219. Calvet HM, Yeaman MR, Filler SG. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob Agents Chemother. 1997;41:535–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Marr KA, Lyons CN, Rustad T, Bowden RA, White TC. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR [In Process Citation]. Antimicrob Agents Chemother. 1998;42:2645–9.

    Google Scholar 

  221. Marr KA, Lyons CN, Rustad TR, Bowden RA, White TC, Rustad T. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR [published erratum appears in Antimicrob Agents Chemother. 1999;43(2):438]. Antimicrob Agents Chemother. 1998;42:2584–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Marr KA, Lyons CN, Ha K, Rustad TR, White TC. Inducible azole resistance associated with a heterogeneous phenotype in Candida albicans. Antimicrob Agents Chemother. 2001;45:52–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Soll DR. High-frequency switching in Candida albicans. Clin Microbiol Rev. 1992;5:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Soll DR, Galask R, Isley S, Rao TV, Stone D, Hicks J, Schmid J, Mac K, Hanna C. Switching of Candida albicans during successive episodes of recurrent vaginitis. J Clin Microbiol. 1989;27:681–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Soll DR. High-frequency switching in Candida albicans and its relations to vaginal candidiasis. Am J Obstet Gynecol. 1988;158:997–1001.

    Article  CAS  PubMed  Google Scholar 

  226. Zhao R, Lockhart SR, Daniels K, Soll DR. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell. 2002;1:353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol. 2001;183:4614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Klar AJ, Srikantha T, Soll DR. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics. 2001;158:919–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Soll DR. Gene regulation during high-frequency switching in Candida albicans. Microbiology. 1997;143(Pt 2):279–88.

    Article  CAS  PubMed  Google Scholar 

  230. Soll DR, Morrow B, Srikantha T, Vargas K, Wertz P. Developmental and molecular biology of switching in Candida albicans. Oral Surg Oral Med Oral Pathol. 1994;78:194–201.

    Article  CAS  PubMed  Google Scholar 

  231. Vargas K, Messer SA, Pfaller M, Lockhart SR, Stapleton JT, Hellstein J, Soll DR. Elevated phenotypic switching and drug resistance of Candida albicans from human immunodeficiency virus-positive individuals prior to first thrush episode. J Clin Microbiol. 2000;38:3595–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Marr KA, Rustad TR, Rex JH, White TC. The trailing end point phenotype in antifungal susceptibility testing is pH dependent. Antimicrob Agents Chemother. 1999;43:1383–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Revankar SG, Kirkpatrick WR, McAtee RK, Fothergill AW, Redding SW, Rinaldi MG, Patterson TF. Interpretation of trailing endpoints in antifungal susceptibility testing by the National Committee for Clinical Laboratory Standards method. J Clin Microbiol. 1998;36:153–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Lee MK, Williams LE, Warnock DW, Arthington-Skaggs BA. Drug resistance genes and trailing growth in Candida albicans isolates. J Antimicrob Chemother. 2004;53:217–24.

    Article  CAS  PubMed  Google Scholar 

  235. Rex JH, Nelson PW, Paetznick VL, Lozano-Chiu M, Espinel-Ingroff A, Anaissie EJ. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for fluconazole by testing critical isolates in a murine model of invasive candidiasis. Antimicrob Agents Chemother. 1998;42:129–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol. 1999;32(4):671–80.

    Article  CAS  PubMed  Google Scholar 

  237. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80(4):1483–521.

    CAS  PubMed  Google Scholar 

  238. Bader T, Bodendorfer B, Schroppel K, Morschhauser J. Calcineurin is essential for virulence in Candida albicans. Infect Immun. 2003;71(9):5344–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Maesaki S, Marichal P, Hossain MA, Sanglard D, Vanden Bossche H, Kohno S. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albicans strains. J Antimicrob Chemother. 1998;42(6):747–53.

    Article  CAS  PubMed  Google Scholar 

  240. Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 2002;21:546–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Marchetti O, Moreillon P, Entenza JM, Vouillamoz J, Glauser MP, Bille J, Sanglard D. Fungicidal synergism of fluconazole and cyclosporine in Candida albicans is not dependent on multidrug efflux transporters encoded by the CDR1, CDR2, CaMDR1, and FLU1 genes. Antimicrob Agents Chemother. 2003;47:1565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV, Snyder SH. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell. 1995;83(3):463–72.

    Article  CAS  PubMed  Google Scholar 

  243. Onyewu C, Wormley Jr FL, Perfect JR, Heitman J. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun. 2004;72:7330–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999;33(5):904–18.

    Article  CAS  PubMed  Google Scholar 

  245. Kafadar KA, Cyert MS. Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot Cell. 2004;3:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. do Valle Matta MA, Jonniaux JL, Balzi E, Goffeau A, van den Hazel B. Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene. 2001;272:111–9.

    Google Scholar 

  247. De Deken X, Raymond M. Constitutive activation of the PDR16 promoter in a Candida albicans azole-resistant clinical isolate overexpressing CDR1 and CDR2. Antimicrob Agents Chemother. 2004;48:2700–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Panwar SL, Krishnamurthy S, Gupta V, Alarco AM, Raymond M, Sanglard D, Prasad R. CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albicans. Yeast. 2001;18(12):1117–29.

    Article  CAS  PubMed  Google Scholar 

  249. Noel T, Francois F, Paumard P, Chastin C, Brethes D, Villard J. Flucytosine-fluconazole cross-resistance in purine-cytosine permease-deficient Candida lusitaniae clinical isolates: indirect evidence of a fluconazole uptake transporter. Antimicrob Agents Chemother. 2003;47(4):1275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Albertson GD, Niimi M, Cannon RD, Jenkinson HF. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother. 1996;40(12):2835–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Maebashi K, Kudoh M, Nishiyama Y, Makimura K, Uchida K, Mori T, Yamaguchi H. A novel mechanism of fluconazole resistance associated with fluconazole sequestration in Candida albicans isolates from a myelofibrosis patient. Microbiol Immunol. 2002;46(5):317–26.

    Article  CAS  PubMed  Google Scholar 

  252. Ghosh M, Shen J, Rosen BP. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1999;96:5001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Janbon G, Sherman F, Rustchenko E. Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc Natl Acad Sci U S A. 1998;95:5150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Legrand M, Lephart P, Forche A, Mueller FM, Walsh T, Magee PT, Magee BB. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol Microbiol. 2004;52:1451–62.

    Article  CAS  PubMed  Google Scholar 

  255. Pujol C, Messer SA, Pfaller M, Soll DR. Drug resistance is not directly affected by mating type locus zygosity in Candida albicans. Antimicrob Agents Chemother. 2003;47:1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hersh MN, Ponder RG, Hastings PJ, Rosenberg SM. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol. 2004;155:352–9.

    Article  CAS  PubMed  Google Scholar 

  257. Heidenreich E, Eisler H. Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells. Mutat Res. 2004;556:201–8.

    Article  CAS  PubMed  Google Scholar 

  258. Heidenreich E, Holzmann V, Eisler H. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains. DNA Repair (Amst). 2004;3:395–402.

    Article  CAS  Google Scholar 

  259. Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. 2003;22:2274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Loffler J, Kelly SL, Hebart H, Schumacher U, Lass-Florl C, Einsele H. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett. 1997;151:263–8.

    Article  CAS  PubMed  Google Scholar 

  261. Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 1991;194:149–65.

    Article  CAS  PubMed  Google Scholar 

  262. O’Connor RM, McArthur CR, Clark-Walker GD. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 mu m. J Bacteriol. 1976;126(2):959–68.

    PubMed  PubMed Central  Google Scholar 

  263. Kontoyiannis DP. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother. 2000;46:191–7.

    Article  CAS  PubMed  Google Scholar 

  264. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents [In Process Citation]. Antimicrob Agents Chemother. 1999;43:2753–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Brun S, Berges T, Poupard P, Vauzelle-Moreau C, Renier G, Chabasse D, Bouchara JP. Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother. 2004;48(5):1788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Defontaine A, Bouchara JP, Declerk P, Planchenault C, Chabasse D, Hallet JN. In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata. J Med Microbiol. 1999;48(7):663–70.

    Article  CAS  PubMed  Google Scholar 

  267. Hallstrom TC, Moye-Rowley WS. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem. 2000;275(48):37347–56.

    Article  CAS  PubMed  Google Scholar 

  268. Bennett JE, Izumikawa K, Marr KA. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother. 2004;48:1773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang X, Moye-Rowley WS. Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the F(0) component of the mitochondrial ATPase. J Biol Chem. 2001;276(51):47844–52.

    Article  CAS  PubMed  Google Scholar 

  270. Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother. 2001;45:1174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kaur R, Castano I, Cormack BP. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother. 2004;48:1600–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Kontoyiannis DP. Efflux-mediated resistance to fluconazole could be modulated by sterol homeostasis in Saccharomyces cerevisiae. J Antimicrob Chemother. 2000;46(2):199–203.

    Article  CAS  PubMed  Google Scholar 

  273. Geraghty P, Kavanagh K. Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Arch Microbiol. 2003;179(4):295–300. Epub 2003 Mar 15.

    Article  CAS  PubMed  Google Scholar 

  274. Geraghty P, Kavanagh K. Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans. J Pharm Pharmacol. 2003;55:179–84.

    Article  CAS  PubMed  Google Scholar 

  275. Gyurko C, Lendenmann U, Troxler RF, Oppenheim FG. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother. 2000;44:425–7.

    Article  Google Scholar 

  276. Arie ZR, Altboum Z, Berdicevsky I, Segal E. Isolation of a petite mutant from a histidine auxotroph of Candida albicans and its characterization [In Process Citation]. Mycopathologia. 1998;141:137–42.

    Article  Google Scholar 

  277. Arie ZR, Altboum Z, Sandovsky-Losica H, Segal E. Adhesion of Candida albicans mutant strains to host tissue. FEMS Microbiol Lett. 1998;163:121–7.

    Article  CAS  PubMed  Google Scholar 

  278. Aoki S, Ito-Kuwa S. Induction of petite mutation with acriflavine and elevated temperature in Candida albicans. J Med Vet Mycol. 1987;25:269–77.

    Article  CAS  PubMed  Google Scholar 

  279. Aoki S, Ito-Kuwa S, Nakamura Y, Masuhara T. Comparative pathogenicity of a wild-type strain and respiratory mutants of Candida albicans in mice. Int J Med Microbiol. 1990;273:332–43.

    CAS  Google Scholar 

  280. Dumitru R, Hornby JM, Nickerson KW. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 2004;48:2350–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002;49(6):973–80.

    Article  CAS  PubMed  Google Scholar 

  282. Denning DW. Echinocandin antifungal drugs. Lancet. 2003;362:1142.

    Article  CAS  PubMed  Google Scholar 

  283. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 2000;44(2):368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Kurtz MB, Douglas C, Marrinan J, Nollstadt K, Onishi J, Dreikorn S, Milligan J, Mandala S, Thompson J, Balkovec JM, et al. Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis. Antimicrob Agents Chemother. 1994;38:2750–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK, Flattery A, Bartizal K, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 1997;41(11):2471–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Higashiyama Y, Kohno S. Micafungin: a therapeutic review. Expert Rev Anti Infect Ther. 2004;2(3):345–55.

    Article  CAS  PubMed  Google Scholar 

  287. Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, Gosey LL, Odds FC, Rinaldi MG, Sheehan DJ, et al. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev. 2001;14:643–58. table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Diekema DJ. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol. 2003;41:5729–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Carver PL. Micafungin. Ann Pharmacother. 2004;38:1707–21.

    Article  CAS  PubMed  Google Scholar 

  290. Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginsky W, Li W, el-Sherbeini M, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A. 1994;91:12907–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Douglas CM, Marrinan JA, Li W, Kurtz MB. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J Bacteriol. 1994;176:5686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Mazur P, Morin N, Baginsky W, el-Sherbeini M, Clemas JA, Nielsen JB, Foor F. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol. 1995;15(10):5671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Mazur P, Baginsky W. In vitro activity of 1,3-beta-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem. 1996;271(24):14604–9.

    Article  CAS  PubMed  Google Scholar 

  294. Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science. 1996;272(5259):279–81.

    Article  CAS  PubMed  Google Scholar 

  295. Kurtz MB, Abruzzo G, Flattery A, Bartizal K, Marrinan JA, Li W, Milligan J, Nollstadt K, Douglas CM. Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun. 1996;64:3244–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Bachmann SP, Patterson TF, Lopez-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol. 2002;40:2228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Paderu P, Park S, Perlin DS. Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob Agents Chemother. 2004;48:3845–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother. 2004;48:3407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Osherov N, May GS, Albert ND, Kontoyiannis DP. Overexpression of Sbe2p, a Golgi protein, results in resistance to caspofungin in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2002;46(8):2462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Markovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N. Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2004;48:3871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Lesage G, Sdicu AM, Menard P, Shapiro J, Hussein S, Bussey H. Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics. 2004;167:35–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Waldorf AR, Polak A. Mechanisms of action of 5-fluorocytosine. Antimicrob Agents Chemother. 1983;23(1):79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Polak A, Wain WH. The effect of 5-fluorocytosine on the blastospores and hyphae of Candida albicans. J Med Microbiol. 1979;12(1):83–97.

    Article  CAS  PubMed  Google Scholar 

  304. Kurtz JE, Exinger F, Erbs P, Jund R. New insights into the pyrimidine salvage pathway of Saccharomyces cerevisiae: requirement of six genes for cytidine metabolism. Curr Genet. 1999;36(3):130–6.

    Article  CAS  PubMed  Google Scholar 

  305. Boeke JD, Trueheart J, Natsoulis G, Fink GR. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–75.

    Article  CAS  PubMed  Google Scholar 

  306. Fonzi WA, Irwin MY. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993;134:717–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Weber S, Polak A. Susceptibility of yeast isolates from defined German patient groups to 5-fluorocytosine. Mycoses. 1992;35(7–8):163–71.

    CAS  PubMed  Google Scholar 

  308. Stiller RL, Bennett JE, Scholer HJ, Wall M, Polak A, Stevens DA. Susceptibility to 5-fluorocytosine and prevalence of serotype in 402 Candida albicans isolates from the United States. Antimicrob Agents Chemother. 1982;22(3):482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Polak A. Combination therapy of experimental candidiasis, cryptococcosis, aspergillosis and wangiellosis in mice. Chemotherapy. 1987;33(5):381–95.

    Article  CAS  PubMed  Google Scholar 

  310. Polak A. Combination therapy for systemic mycosis. Infection. 1989;17(4):203–9.

    Article  CAS  PubMed  Google Scholar 

  311. Polak A. Combination therapy in systemic mycosis. J Chemother. 1990;2(4):211–7.

    Article  CAS  PubMed  Google Scholar 

  312. Polak A. Synergism of polyene antibiotics with 5-fluorocytosine. Chemotherapy. 1978;24(1):2–16.

    Article  CAS  PubMed  Google Scholar 

  313. Polak A, Scholer HJ, Wall M. Combination therapy of experimental candidiasis, cryptococcosis and aspergillosis in mice. Chemotherapy. 1982;28(6):461–79.

    Article  CAS  PubMed  Google Scholar 

  314. Nobre G, Sobral T, Ferreira AF. In vitro susceptibility to 5-fluorocytosine and nystatin of common clinical yeast isolates. Mycopathologia. 1981;73(1):39–41.

    Article  CAS  PubMed  Google Scholar 

  315. Cuenca-Estrella M, Diaz-Guerra TM, Mellado E, Rodriguez-Tudela JL. Flucytosine primary resistance in Candida species and Cryptococcus neoformans. Eur J Clin Microbiol Infect Dis. 2001;20(4):276–9.

    Article  CAS  PubMed  Google Scholar 

  316. Pfaller MA, Messer SA, Boyken L, Huynh H, Hollis RJ, Diekema DJ. In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods. Antimicrob Agents Chemother. 2002;46(11):3518–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Barchiesi F, Arzeni D, Caselli F, Scalise G. Primary resistance to flucytosine among clinical isolates of Candida spp. J Antimicrob Chemother. 2000;45(3):408–9.

    Article  CAS  PubMed  Google Scholar 

  318. Fasoli MO, Kerridge D, Morris PG, Torosantucci A. 19F nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrob Agents Chemother. 1990;34(10):1996–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Whelan WL, Beneke ES, Rogers AL, Soll DR. Segregation of 5-fluorocytosine-resistance variants by Candida albicans. Antimicrob Agents Chemother. 1981;19(6):1078–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Whelan WL, Kerridge D. Decreased activity of UMP pyrophosphorylase associated with resistance to 5-fluorocytosine in Candida albicans. Antimicrob Agents Chemother. 1984;26(4):570–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol. 1987;15(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  322. Whelan WL, Markie D, Kwon-Chung KJ. Complementation analysis of resistance to 5-fluorocytosine in Candida albicans. Antimicrob Agents Chemother. 1986;29(5):726–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Dodgson AR, Dodgson KJ, Pujol C, Pfaller MA, Soll DR. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother. 2004;48(6):2223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Pujol C, Pfaller MA, Soll DR. Flucytosine resistance is restricted to a single genetic clade of Candida albicans. Antimicrob Agents Chemother. 2004;48(1):262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Hope WW, Tabernero L, Denning DW, Anderson MJ. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother. 2004;48:4377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Montplaisir S, Drouhet E, Mercier-Soucy L. Sensitivity and resistance of pathogenic yeasts to 5-fluoropyrimidines. II.—mechanisms of resistance to 5-fluorocytosine (5-FC) and 5-fluorouracil (5-FU) (author’s transl). Ann Microbiol (Paris). 1975;126B(1):41–9.

    Google Scholar 

  327. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  328. Rohde JR, Cardenas ME. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol. 2004;279:53–72.

    CAS  PubMed  Google Scholar 

  329. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother. 2001;45(11):3162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Schmelzle T, Beck T, Martin DE, Hall MN. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol. 2004;24(1):338–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150:1507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Obeid LM, Okamoto Y, Mao C. Yeast sphingolipids: metabolism and biology. Biochim Biophys Acta. 2002;1585(2–3):163–71.

    Article  CAS  PubMed  Google Scholar 

  333. Martin SW, Konopka JB. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell. 2004;3(3):675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Hashida-Okado T, Ogawa A, Endo M, Yasumoto R, Takesako K, Kato I. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet. 1996;251(2):236–44.

    CAS  PubMed  Google Scholar 

  335. Heidler SA, Radding JA. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrob Agents Chemother. 1995;39(12):2765–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Endo M, Takesako K, Kato I, Yamaguchi H. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1997;41(3):672–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Zhong W, Jeffries MW, Georgopapadakou NH. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob Agents Chemother. 2000;44(3):651–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem. 1988;263:7472–7.

    CAS  PubMed  Google Scholar 

  339. Li XS, Reddy MS, Baev D, Edgerton M. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem. 2003;278:28553–61.

    Article  CAS  PubMed  Google Scholar 

  340. Dong J, Vylkova S, Li XS, Edgerton M. Calcium blocks fungicidal activity of human salivary histatin 5 through disruption of binding with Candida albicans. J Dent Res. 2003;82:748–52.

    Article  CAS  PubMed  Google Scholar 

  341. Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC, Amerongen AV, Abee T. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem. 1999;274:7286–91.

    Article  CAS  PubMed  Google Scholar 

  342. Ruissen AL, Groenink J, Helmerhorst EJ, Walgreen-Weterings E, Van’t Hof W, Veerman EC, Nieuw Amerongen AV. Effects of histatin 5 and derived peptides on Candida albicans. Biochem J. 2001;356:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Gyurko C, Lendenmann U, Troxler RF, Oppenheim FG. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother. 2000;44:348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem. 1999;274:18872–9.

    Article  CAS  PubMed  Google Scholar 

  345. De Smet K, Eberhardt I, Reekmans R, Contreras R. Bax-induced cell death in Candida albicans. Yeast. 2004;21:1325–34.

    Article  PubMed  CAS  Google Scholar 

  346. Smet KD, Reekmans R, Contreras R. Role of oxidative phosphorylation in histatin 5-induced cell death in Saccharomyces cerevisiae. Biotechnol Lett. 2004;26:1781–5.

    Article  PubMed  CAS  Google Scholar 

  347. Xu Y, Ambudkar I, Yamagishi H, Swaim W, Walsh TJ, O’Connell BC. Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob Agents Chemother. 1999;43:2256–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Fitzgerald DH, Coleman DC, O’Connell BC. Binding, internalisation and degradation of histatin 3 in histatin-resistant derivatives of Candida albicans. FEMS Microbiol Lett. 2003;220:247–53.

    Article  CAS  PubMed  Google Scholar 

  349. Wunder D, Dong J, Baev D, Edgerton M. Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans. Antimicrob Agents Chemother. 2004;48:110–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Koshlukova SE, Araujo MW, Baev D, Edgerton M. Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun. 2000;68:6848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Baev D, Rivetta A, Vylkova S, Sun JN, Zeng GF, Slayman CL, Edgerton M. The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem. 2004;279:55060–72.

    Article  CAS  PubMed  Google Scholar 

  352. James G, Butt AM. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol. 2002;447:247.

    Article  CAS  PubMed  Google Scholar 

  353. Xu YY, Samaranayake YH, Samaranayake LP, Nikawa H. In vitro susceptibility of Candida species to lactoferrin. Med Mycol. 1999;37:35–41.

    Article  CAS  PubMed  Google Scholar 

  354. Wakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H. Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob Agents Chemother. 1998;42:1587–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  355. Wakabayashi H, Abe S, Okutomi T, Tansho S, Kawase K, Yamaguchi H. Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiol Immunol. 1996;40:821–5.

    Article  CAS  PubMed  Google Scholar 

  356. Ueta E, Tanida T, Osaki T. A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J Pept Res. 2001;57:240–9.

    Article  CAS  PubMed  Google Scholar 

  357. Soukka T, Tenovuo J, Lenander-Lumikari M. Fungicidal effect of human lactoferrin against Candida albicans. FEMS Microbiol Lett. 1992;69:223–8.

    Article  CAS  PubMed  Google Scholar 

  358. Samaranayake YH, Samaranayake LP, Wu PC, So M. The antifungal effect of lactoferrin and lysozyme on Candida krusei and Candida albicans. Apmis. 1997;105:875–83.

    Article  CAS  PubMed  Google Scholar 

  359. Samaranayake YH, Samaranayake LP, Pow EH, Beena VT, Yeung KW. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human immunodeficiency virus-infected southern Chinese cohort. J Clin Microbiol. 2001;39:3296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Nikawa H, Samaranayake LP, Tenovuo J, Pang KM, Hamada T. The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol. 1993;38:1057–63.

    Article  CAS  PubMed  Google Scholar 

  361. Naidu AS, Chen J, Martinez C, Tulpinski J, Pal BK, Fowler RS. Activated lactoferrin’s ability to inhibit Candida growth and block yeast adhesion to the vaginal epithelial monolayer. J Reprod Med. 2004;49:859–66.

    CAS  PubMed  Google Scholar 

  362. Naidu AS, Fowler RS, Martinez C, Chen J, Tulpinski J. Activated lactoferrin and fluconazole synergism against Candida albicans and Candida glabrata vaginal isolates. J Reprod Med. 2004;49:800–7.

    CAS  PubMed  Google Scholar 

  363. Kuipers ME, de Vries HG, Eikelboom MC, Meijer DK, Swart PJ. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother. 1999;43:2635–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  364. Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S, Tomita M. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol (Berl). 1993;182:97–105.

    Article  CAS  Google Scholar 

  365. Kuipers ME, Beljaars L, Van Beek N, De Vries HG, Heegsma J, Van Den Berg JJ, Meijer DK, Swart PJ. Conditions influencing the in vitro antifungal activity of lactoferrin combined with antimycotics against clinical isolates of Candida. Impact on the development of buccal preparations of lactoferrin. Apmis. 2002;110:290–8.

    Article  CAS  PubMed  Google Scholar 

  366. Lupetti A, Paulusma-Annema A, Welling MM, Senesi S, van Dissel JT, Nibbering PH. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother. 2000;44:3257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Viejo-Diaz M, Andres MT, Fierro JF. Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its Candidacidal activity. FEMS Immunol Med Microbiol. 2004;42:181–5.

    Article  CAS  PubMed  Google Scholar 

  368. Viejo-Diaz M, Andres MT, Fierro JF. Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother. 2004;48:1242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Nikawa H, Samaranayake LP, Tenovuo J, Hamada T. The effect of antifungal agents on the in vitro susceptibility of Candida albicans to apo-lactoferrin. Arch Oral Biol. 1994;39:921–3.

    Article  CAS  PubMed  Google Scholar 

  370. Nikawa H, Samaranayake LP, Hamada T. Modulation of the anti-Candida activity of apo-lactoferrin by dietary sucrose and tunicamycin in vitro. Arch Oral Biol. 1995;40:581–4.

    Article  CAS  PubMed  Google Scholar 

  371. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75:39–48.

    Article  PubMed  CAS  Google Scholar 

  372. Ramanathan B, Davis EG, Ross CR, Blecha F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect. 2002;4:361–72.

    Article  CAS  PubMed  Google Scholar 

  373. Lehrer RI, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol. 2002;9:18–22.

    Article  PubMed  Google Scholar 

  374. Guthmiller JM, Vargas KG, Srikantha R, Schomberg LL, Weistroffer PL, McCray Jr PB, Tack BF. Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother. 2001;45:3216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Klotz SA, Gaur NK, Rauceo J, Lake DF, Park Y, Hahm KS, Lipke PN. Inhibition of adherence and killing of Candida albicans with a 23-Mer peptide (Fn/23) with dual antifungal properties. Antimicrob Agents Chemother. 2004;48:4337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol. 1993;11:105–28.

    Article  CAS  PubMed  Google Scholar 

  377. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193:1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol. 2002;10:179–86.

    Article  CAS  PubMed  Google Scholar 

  379. Hammer KA, Carson CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J Antimicrob Chemother. 2004;53:1081–5.

    Article  CAS  PubMed  Google Scholar 

  380. Pina-Vaz C, Goncalves Rodrigues A, Pinto E, Costa-de-Oliveira S, Tavares C, Salgueiro L, Cavaleiro C, Goncalves MJ, Martinez-de-Oliveira J. Antifungal activity of Thymus oils and their major compounds. J Eur Acad Dermatol Venereol. 2004;18:73–8.

    Article  CAS  PubMed  Google Scholar 

  381. Salgueiro LR, Pinto E, Goncalves MJ, Pina-Vaz C, Cavaleiro C, Rodrigues AG, Palmeira A, Tavares C, Costa-de-Oliveira S, Martinez-de-Oliveira J. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med. 2004;70:572–5.

    Article  CAS  PubMed  Google Scholar 

  382. Shin S, Kim JH. Antifungal activities of essential oils from Thymus quinquecostatus and T. magnus. Planta Med. 2004;70:1090–2.

    Article  CAS  PubMed  Google Scholar 

  383. Shin S, Lim S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J Appl Microbiol. 2004;97:1289–96.

    Article  CAS  PubMed  Google Scholar 

  384. Simic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother Res. 2004;18:713–7.

    Article  CAS  PubMed  Google Scholar 

  385. Chami N, Chami F, Bennis S, Trouillas J, Remmal A. Antifungal treatment with carvacrol and eugenol of oral candidiasis in immunosuppressed rats. Braz J Infect Dis. 2004;8:217–26.

    Article  CAS  PubMed  Google Scholar 

  386. Monk BC, Niimi K, Lin S, Knight A, Kardos TB, Cannon RD, Parshot R, King A, Lun D, Harding DR. Surface-active fungicidal d-Peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother. 2005;49:57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Klotz SA, Gaur NK, Lake DF, Chan V, Rauceo J, Lipke PN. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun. 2004;72:2029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Nikawa H, Fukushima H, Makihira S, Hamada T, Samaranayake LP. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis. 2004;10:221–8.

    Article  CAS  PubMed  Google Scholar 

  389. Park Y, Lee DG, Hahm KS. HP(2-9)-magainin 2(1-12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J Pept Sci. 2004;10:204–9.

    Article  CAS  PubMed  Google Scholar 

  390. Petraitis V, Petraitiene R, Kelaher AM, Sarafandi AA, Sein T, Mickiene D, Bacher J, Groll AH, Walsh TJ. Efficacy of PLD-118, a novel inhibitor of Candida isoleucyl-tRNA synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albicans. Antimicrob Agents Chemother. 2004;48:3959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Ziegelbauer K, Babczinski P, Schonfeld W. Molecular mode of action of the antifungal beta-amino acid BAY 10-8888. Antimicrob Agents Chemother. 1998;42(9):2197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  392. Ziegelbauer K. Decreased accumulation or increased isoleucyl-tRNA synthetase activity confers resistance to the cyclic beta-amino acid BAY 10-8888 in Candida albicans and Candida tropicalis. Antimicrob Agents Chemother. 1998;42(7):1581–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Capobianco JO, Zakula D, Coen ML, Goldman RC. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action. Biochem Biophys Res Commun. 1993;190:1037–44.

    Article  CAS  PubMed  Google Scholar 

  394. Jethwaney D, Hofer M, Khaware RK, Prasad R. Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin. Microbiology. 1997;143(Pt 2):397–404.

    Article  CAS  PubMed  Google Scholar 

  395. Konishi M, Nishio M, Saitoh K, Miyaki T, Oki T, Kawaguchi H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo). 1989;42:1749–55.

    Article  CAS  Google Scholar 

  396. Ben-Josef AM, Manavathu EK, Platt D, Sobel JD. In vitro antifungal activity of CAN-296: a naturally occurring complex carbohydrate. J Antibiot (Tokyo). 1997;50:937–43.

    Article  CAS  Google Scholar 

  397. Ben-Josef AM, Manavathu EK, Platt D, Sobel JD. Involvement of calcium inhibitable binding to the cell wall in the fungicidal activity of CAN-296. J Antimicrob Chemother. 1999;44:217–22.

    Article  CAS  PubMed  Google Scholar 

  398. Ben-Josef AM, Manavathu EK, Platt D, Sobel JD. Proton translocating ATPase mediated fungicidal activity of a novel complex carbohydrate: CAN-296. Eur J Med Res. 2000;5:126.

    Google Scholar 

  399. Ben-Josef AM, Cutright JL, Manavathu EK, Sobel JD. CAN-296-P is effective against cutaneous candidiasis in guinea pigs. Int J Antimicrob Agents. 2003;22:168–71.

    Article  CAS  PubMed  Google Scholar 

  400. Capa L, Mendoza A, Lavandera JL, Gomez de las Heras F, Garcia-Bustos JF. Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 1998;42:2694–9.

    Google Scholar 

  401. Dominguez JM, Kelly VA, Kinsman OS, Marriott MS, Gomez de las Heras F, Martin JJ. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 1998;42:2274–8.

    Google Scholar 

  402. Dominguez JM, Martin JJ. Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother. 1998;42:2279–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  403. Dominguez JM, Gomez-Lorenzo MG, Martin JJ. Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem. 1999;274:22423–7.

    Article  CAS  PubMed  Google Scholar 

  404. Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D. Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother. 2000;44:3389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Martinez A, Ferrer S, Santos I, Jimenez E, Sparrowe J, Regadera J, De Las Heras FG, Gargallo-Viola D. Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. Antimicrob Agents Chemother. 2001;45:3304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Martinez A, Regadera J, Jimenez E, Santos I, Gargallo-Viola D. Antifungal efficacy of GM237354, a sordarin derivative, in experimental oral candidiasis in immunosuppressed rats. Antimicrob Agents Chemother. 2001;45:1008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S, Jorgensen R, Yates SP, Teal DJ, Nilsson J, Prentice GA, et al. Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother. 2005;49:52–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Hall RM, Dawson MJ, Jones CA, Roberts AD, Sidebottom PJ, Stead P, Taylor NL. The production of novel sordarin analogues by biotransformation. J Antibiot (Tokyo). 2001;54:948–57.

    Article  CAS  Google Scholar 

  409. Tanaka M, Moriguchi T, Kizuka M, Ono Y, Miyakoshi S, Ogita T. Microbial hydroxylation of zofimarin, a sordarin-related antibiotic. J Antibiot (Tokyo). 2002;55:437–41.

    Article  CAS  Google Scholar 

  410. Serrano-Wu MH, St Laurent DR, Chen Y, Huang S, Lam KR, Matson JA, Mazzucco CE, Stickle TM, Tully TP, Wong HS, et al. Sordarin oxazepine derivatives as potent antifungal agents. Bioorg Med Chem Lett. 2002;12:2757–60.

    Article  CAS  PubMed  Google Scholar 

  411. Serrano-Wu MH, St Laurent DR, Mazzucco CE, Stickle TM, Barrett JF, Vyas DM, Balasubramanian BN. Oxime derivatives of sordaricin as potent antifungal agents. Bioorg Med Chem Lett. 2002;12:943–6.

    Article  CAS  PubMed  Google Scholar 

  412. Daferner M, Mensch S, Anke T, Sterner O. Hypoxysordarin, a new sordarin derivative from Hypoxylon croceum. Z Naturforsch C. 1999;54:474–80.

    Article  CAS  PubMed  Google Scholar 

  413. Shastry M, Nielsen J, Ku T, Hsu MJ, Liberator P, Anderson J, Schmatz D, Justice MC. Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology. 2001;147:383–90.

    Article  CAS  PubMed  Google Scholar 

  414. Justice MC, Hsu MJ, Tse B, Ku T, Balkovec J, Schmatz D, Nielsen J. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem. 1998;273:3148–51.

    Article  CAS  PubMed  Google Scholar 

  415. Justice MC, Ku T, Hsu MJ, Carniol K, Schmatz D, Nielsen J. Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem. 1999;274:4869–75.

    Article  CAS  PubMed  Google Scholar 

  416. Gomez-Lorenzo MG, Garcia-Bustos JF. Ribosomal P-protein stalk function is targeted by sordarin antifungals. J Biol Chem. 1998;273:25041–4.

    Article  CAS  PubMed  Google Scholar 

  417. Santos C, Rodriguez-Gabriel MA, Remacha M, Ballesta JP. Ribosomal P0 protein domain involved in selectivity of antifungal sordarin derivatives. Antimicrob Agents Chemother. 2004;48:2930–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Lalioti VS, Perez-Fernandez J, Remacha M, Ballesta JPG. Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Mol Microbiol. 2002;46:719–92.

    Article  CAS  PubMed  Google Scholar 

  419. Kelly SL, Lamb DC, Kelly DE. Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol Lett. 1999;180:171–5.

    CAS  PubMed  Google Scholar 

  420. Lamb D, Kelly DE, Hagen-Schunck W, Shyadehi AZ, Akhtar M, Lowe DJ, Baldwin BC, Kelly SL. The mutation T315A in Candida albicans sterol 14a-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem. 1997;272:5682–8.

    Article  CAS  PubMed  Google Scholar 

  421. Lamb DC, Kelly DE, White TC, Kelly SL. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother. 2000;44:63–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. White T. The presence of R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14a-demethylase in Candida albicans. Antimicrob Agents Chemother. 1997;41:1488–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  423. Kelly SL, Lamb DC, Loeffler J, Einsele H, Kelly DE. The G464S amino acid substitution in Candida albicans sterol 14alpha-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun. 1999;262:174–9.

    Article  CAS  PubMed  Google Scholar 

  424. Loffler J, Kelly SL, Hebart H, Schumacher U, Lass-Florl C, Einsele H. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. Gene. 1997;192:235–40.

    Article  Google Scholar 

  425. Favre B, Didmon M, Ryder NS. Multiple amino acid substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans [In Process Citation]. Microbiology. 1999;145:2715–25.

    Article  CAS  PubMed  Google Scholar 

  426. Franz R, Michel S, Morschhauser J. A fourth gene from the Candida albicans CDR family of ABC transporters. Gene. 1998;220(1–2):91–8.

    Article  CAS  PubMed  Google Scholar 

  427. Dickson RC, Lester RL. Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta. 2002;1583(1):13–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Akins Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Akins, R.A., Sobel, J.D. (2017). Antifungal Targets, Mechanisms of Action, and Resistance in Candida albicans . In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_30

Download citation

Publish with us

Policies and ethics