Skip to main content

Applications of Microarray Bioprinting

  • Chapter
  • First Online:
Microarray Bioprinting Technology

Abstract

Applications for microarray bioprinting include compound toxicity and efficacy assessments, disease diagnostics, and simulation of tissue microenvironments on a small scale. The low volume, high-throughput nature of this system makes it ideal for rapid screening and assay development, particularly in regards towards assays that can be used on various tissue engineering platforms. In this section, we highlight the development of assays for high-throughput screening (HTS) using microarray bioprinting technologies, with a specific focus on toxicity assays that affect the liver and the central nervous system (CNS). Next, we will highlight the various organ systems that can be recapitulated using 3D bioprinting, and the advantages and disadvantages of tissue miniaturization for microarray technologies. Finally, we’ll discuss other applications, including tissue regeneration studies, and drug patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reuben, A., Koch, D. G., & Lee, W. M. (2010). Drug-induced acute liver failure: Results of a U.S. multicenter, prospective study. Hepatology, 52(6), 2065–2076. doi:10.1002/hep.23937.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C., & Greyson, D. (2011). The cost of drug development: A systematic review. Health Policy (Amsterdam, Netherlands), 100(1), 4–17. doi:10.1016/j.healthpol.2010.12.002.

    Article  Google Scholar 

  3. Preventable adverse drug reactions: A focus on drug interactions. 2016. Retrieved from http://www.fda.gov/Drugs/DevelopmentApprovalProces.

  4. Elliott, N. T., & Yuan, F. A. N. (2011). A review of three-dimensional in vitro tissue models for drug discovery and transport Studies. Journal of Pharmaceutical Sciences, 100(1), 59–74. doi:10.1002/jps.22257.

    Article  CAS  PubMed  Google Scholar 

  5. Godoy, P., Hewitt, N. J., Albrecht, U., Andersen, M. E., Ansari, N., Bhattacharya, S., et al. (2013). Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 87(8), 1315–1530. doi:10.1007/s00204-013-1078-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimlin, L. C., Casagrande, G., & Virador, V. M. (2013). In vitro three-dimensional (3D) models in cancer research: An update. Molecular Carcinogenesis, 52(3), 167–182. doi:10.1002/mc.21844.

    Article  PubMed  Google Scholar 

  7. Keogh, J. P. (2012). Membrane transporters in drug development. Advances in Pharmacology, 63, 1–42. doi:10.1016/B978-0-12-398339-8.00001-X.

    Article  CAS  PubMed  Google Scholar 

  8. Lin, J., Schyschka, L., Mühl-Benninghaus, R., Neumann, J., Hao, L., Nussler, N., et al. (2012). Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism. Archives of Toxicology, 86(1), 87–95. doi:10.1007/s00204-011-0733-y.

    Article  CAS  PubMed  Google Scholar 

  9. Walsky, R. L., & Obach, R. S. (2004). Validated assays for human cytochrome P450 activities. Drug Metabolism and Disposition, 32(6), 647–660. doi:10.1124/dmd.32.6.647.

    Article  CAS  PubMed  Google Scholar 

  10. Zarowna-Dabrowska, A., McKenna, E. O., Schutte, M. E., Glidle, A., Chen, L., Cuestas-Ayllon, C., et al. (2012). Generation of primary hepatocyte microarrays by piezoelectric printing. Colloids and Surfaces B: Biointerfaces, 89(1), 126–132. doi:10.1016/j.colsurfb.2011.09.016.

    Article  CAS  PubMed  Google Scholar 

  11. Meli, L., Jordan, E. T., Clark, D. S., Linhardt, R. J., & Dordick, J. S. (2012). Influence of a three-dimensional, microarray environment on human cell culture in drug screening systems. Biomaterials, 33(35), 9087–9096. doi:10.1016/j.biomaterials.2012.08.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leite, S. B., Iwona, W.-Z., Zaldivar, J. M., Airola, E., Reis-Fernandes, M. A., Mennecozzi, M., et al. (2012). 3D HepaRG model as an attractive tool for toxicity testing. Toxicological Sciences, 130(1), 106–116.

    Google Scholar 

  13. Leite, S. B., Teixeira, A. P., Miranda, J. P., Tostões, R. M., Clemente, J. J., Sousa, M. F., et al. (2011). Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications. Toxicology in Vitro, 25(4), 825–832. doi:10.1016/j.tiv.2011.02.002.

    Article  CAS  PubMed  Google Scholar 

  14. Chang, J. H., Plise, E., Cheong, J., Ho, Q., & Lin, M. (2013). Evaluating the in vitro inhibition of UGT1A1, OATP1B1, OATP1B3, MRP2, and BSEP in predicting drug-induced hyperbilirubinemia. Molecular Pharmaceutics, 10(8), 3067–3075.

    Article  CAS  PubMed  Google Scholar 

  15. Liang, Q., Sheng, Y., Jiang, P., Ji, L., Xia, Y., Min, Y., et al. (2011). The gender-dependent difference of liver GSH antioxidant system in mice and its influence on isoline-induced liver injury. Toxicology, 280(1–2), 61–69. doi:10.1016/j.tox.2010.11.010.

    Article  CAS  PubMed  Google Scholar 

  16. Kis, E., Ioja, E., Rajnai, Z., Jani, M., Méhn, D., Herédi-Szabó, K., et al. (2012). BSEP inhibition: In vitro screens to assess cholestatic potential of drugs. Toxicology In Vitro, 26(8), 1294–1299. doi:10.1016/j.tiv.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J. K., Marion, T. L., Abe, K., Lim, C., Pollock, G. M., & Brouwer, K. L. R. (2010). Hepatobiliary disposition of troglitazone and metabolites in rat and human sandwich-cultured hepatocytes: Use of Monte Carlo simulations to assess the impact of changes in biliary excretion on troglitazone sulfate accumulation. The Journal of Pharmacology and Experimental Therapeutics, 332(1), 26–34. doi:10.1124/jpet.109.156653.tion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cascorbi, I., & Haenisch, S. (2010). Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods in Molecular Biology, 596, 95–121. doi:10.1007/978-1-60761-416-6.

    Article  CAS  PubMed  Google Scholar 

  19. Fromm, M. F. (2004). Importance of P-glycoprotein at blood-tissue barriers. Trends in Pharmacological Sciences, 25(8), 423–429. doi:10.1016/j.tips.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  20. Stieger, B. (2011). The role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP) and of the Bile Salt Export Pump (BSEP) in physiology and pathophysiology of bile formation. In M. F. Fromm & R. B. Kim (Eds.), Drug transporters. Berlin: Springer. doi:10.1007/978-3-642-14541-4.

    Google Scholar 

  21. Goral, V. N., Hsieh, Y.-C., Petzold, O. N., Clark, J. S., Yuen, P. K., & Faris, R. A. (2010). Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab on a Chip, 10(24), 3380–3386. doi:10.1039/c0lc00135j.

    Article  CAS  PubMed  Google Scholar 

  22. Thompson, R. A., Isin, E. M., Y, L., Weidolf, L., Page, K., Wilson, I., et al. (2012). In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chemical Research in Toxicology, 25(8), 1616–1632. doi:10.1021/tx300091x.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, J. J., Diaz, D., & O’Brien, P. J. (2004). Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chemico-Biological Interactions, 150(1), 115–128. doi:10.1016/j.cbi.2004.09.011.

    Article  CAS  PubMed  Google Scholar 

  24. Porceddu, M., Buron, N., Roussel, C., Labbe, G., Fromenty, B., & Borgne-Sanchez, A. (2012). Prediction of liver injury induced by chemicals in human with a multiparametric assay on isolated mouse liver mitochondria. Toxicologic Pathology, 129(2), 332–345.

    CAS  Google Scholar 

  25. Hynes, J., Swiss, R. L., & Will, Y. (2012). High-throughput analysis of mitochondrial oxygen consumption. In C. M. Palmeira & A. J. Moreno (Eds.), Mitochondrial bioenergetics: Methods and protocols (Vol. 810, pp. 103–117). New York: Humana Press. doi:10.1007/978-1-61779-382-0.

    Chapter  Google Scholar 

  26. Aleo, M. D., Luo, Y., Swiss, R., Bonin, P. D., Potter, D. M., & Will, Y. (2014). Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology, 60(3), 1015–1022. doi:10.1002/hep.27206.

    Article  CAS  PubMed  Google Scholar 

  27. Ong, M. M. K., Latchoumycandane, C., & Boelsterli, U. A. (2007). Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicological Sciences, 97(1), 205–213. doi:10.1093/toxsci/kfl180.

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes, T. G., Kwon, S. J., Bale, S. S., Lee, M. Y., Diogo, M. M., Clark, D. S., et al. (2010). Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnology and Bioengineering, 106(1), 106–118. doi:10.1002/bit.22661.

    CAS  PubMed  Google Scholar 

  29. Fernandes, T. G., Kwon, S. J., Lee, M. Y., Clark, D. S., Cabral, J. M. S., & Dordick, J. S. (2008). On-chip, cell-based microarray immunofluorescence assay for high-throughput analysis of target proteins. Analytical Chemistry, 80(17), 6633–6639. doi:10.1021/ac800848j.

    Article  CAS  PubMed  Google Scholar 

  30. Kwon, S. J., Lee, D. W., Shah, D. A., Ku, B., Jeon, S. Y., Solanki, K., et al. (2014). High-throughput and combinatorial gene expression on a chip for metabolism-induced toxicology screening. Nature Communications, 5, 3739. doi:10.1038/ncomms4739.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulasov, I., Nandi, S., Dey, M., Sonabend, A. M., & Lesniak, M. S. (2011). Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133+ glioma stem cells to temozolomide therapy. Molecular Medicine, 17(1–2), 103–112. doi:10.2119/molmed.2010.00062.

    CAS  PubMed  Google Scholar 

  32. Tegenge, M. A., Rockel, T. D., Fritsche, E., & Bicker, G. (2011). Nitric oxide stimulates human neural progenitor cell migration via cGMP-mediated signal transduction. Cellular and Molecular Life Sciences, 68(12), 2089–2099. doi:10.1007/s00018-010-0554-9.

    Article  CAS  PubMed  Google Scholar 

  33. Blurton-jones, M., Spencer, B., Michael, S., Castello, N. A., Agazaryan, A. A., Davis, J. L., et al. (2014). Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Research & Therapy, 5(2), 46.

    Article  Google Scholar 

  34. Farrel, K., Joshi, P., Roth, A., Kothapalli, C. R., & Lee, M.-Y. (2016). High-throughput screening of toxic chemicals against neural stem cells. In J. L. Sherley (Ed.), Human stem cell toxicology (pp. 31–63). Cambridge: The Royal Society of Chemistry.

    Chapter  Google Scholar 

  35. Ferguson, C. S., & Tyndale, R. F. (2011). Cytochrome P450 enzymes in the brain: Emerging evidence of biological significance. Trends in Pharmacological Sciences, 32(12), 708–714. doi:10.1016/j.tips.2011.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miksys, S., & Tyndale, R. F. (2013). Cytochrome P450-mediated drug metabolism in the brain. Journal of Psychiatry & Neuroscience, 38(3), 152–163. doi:10.1503/jpn.120133.

    Article  Google Scholar 

  37. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785. doi:10.1038/nbt.2958.

    Article  CAS  PubMed  Google Scholar 

  38. Arias, I., Wolkoff, A., Boyer, J., Shafritz, D., Fausto, N., Alter, H., & Cohen, D. (2011). The liver: Biology and pathobiology. Chichester: Wiley.

    Google Scholar 

  39. Boron, W. F., & Boulpaep, E. L. (2009). Medical physiology (2nd ed.). Philadelphia, PA: Saunders Elsevier.

    Google Scholar 

  40. Jaeschke, H. (2011). Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts. Journal of Gastroenterology and Hepatology, 26(Suppl 1), 173–179. doi:10.1111/j.1440-1746.2010.06592.x.

    Article  CAS  PubMed  Google Scholar 

  41. Zimmermann, H. W., Trautwein, C., & Tacke, F. (2012). Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Frontiers in Physiology, 3, 1–18. doi:10.3389/fphys.2012.00056.

    Article  Google Scholar 

  42. Kim, Y., & Rajagopalan, P. (2010). 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes. PloS One, 5(11), 1–10. doi:10.1371/journal.pone.0015456.

    Google Scholar 

  43. Sato, Y., Tsukada, K., & Hatakeyama, K. (1999). Role of shear stress and immune responses in liver regeneration after a partial hepatectomy. Surgery Today, 29(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tuleuova, N., Lee, J. Y., Lee, J., Ramanculov, E., Zern, M. A., & Revzin, A. (2010). Using growth factor arrays and micropatterned co-cultures to induce hepatic differentiation of embryonic stem cells. Biomaterials, 31(35), 9221–9231. doi:10.1016/j.biomaterials.2010.08.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ueno, T., Sata, M., Sakata, R., Torimura, T., Sakamoto, M., Sugawara, H., et al. (1997). Hepatic stellate cells and intralobular innervation in human liver cirrhosis. Human Pathology, 28(8), 953–959.

    Article  CAS  PubMed  Google Scholar 

  46. Messner, S., Agarkova, I., Moritz, W., & Kelm, J. M. (2013). Multi-cell type human liver microtissues for hepatotoxicity testing. Archives of Toxicology, 87(1), 209–213. doi:10.1007/s00204-012-0968-2.

    Article  CAS  PubMed  Google Scholar 

  47. Kostadinova, R., Boess, F., Applegate, D., Suter, L., Weiser, T., Singer, T., et al. (2013). A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicology and Applied Pharmacology, 268(1), 1–16. doi:10.1016/j.taap.2013.01.012.

    Article  CAS  PubMed  Google Scholar 

  48. Fiegel, H. C., Kneser, U., Kluth, D., & Rolle, U. (2010). Hepatic tissue engineering. Handchirurgie, Mikrochirurgie, Plast Chir Organ der Deutschsprachigen Arbeitsgemeinschaft für Handchirurgie Organ der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der Peripher Nerven und Gefässe Organ der Vereinigung der Deut, 42(6), 337–41. doi:10.1055/s-0030-1252045.

    Google Scholar 

  49. Hoekstra, R., Nibourg, G. A., van der Hoeven, T. V., Plomer, G., Seppen, J., Ackermans, M. T., et al. (2013). Phase 1 and phase 2 drug metabolism and bile acid production of HepaRG cells in a bioartificial liver in absence of dimethyl sulfoxide. Drug Metabolism and Disposition, 41(3), 562–567. doi:10.1124/dmd.112.049098.

    Article  CAS  PubMed  Google Scholar 

  50. Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760–772. doi:10.1038/nbt.2989.

    Article  CAS  PubMed  Google Scholar 

  51. Toh, Y.-C., Lim, T. C., Tai, D., Xiao, G., van Noort, D., & Yu, H. (2009). A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab on a Chip, 9(14), 2026–2035. doi:10.1039/b900912d.

    Article  CAS  PubMed  Google Scholar 

  52. Bale, S. S., Vernetti, L., Senutovitch, N., Jindal, R., Hegde, M., Gough, A., et al. (2014). In vitro platforms for evaluating liver toxicity. Experimental Biology and Medicine (Maywood, N.J.), 239(9), 1180–1191. doi:10.1177/1535370214531872.

    Article  Google Scholar 

  53. Nakazawa, K., & Shinmura, Y. (2011). Effects of culture conditions on a micropatterned co-culture of rat hepatocytes with 3T3 cells. Journal of Bioprocessing & Biotechniques, 01(3). doi:10.4172/2155-9821.S3-002.

  54. Li, C. Y., Stevens, K. R., Schwartz, R. E., Alejandro, B. S., Huang, J. H., & Bhatia, S. N. (2014). Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Engineering. Part A, 20(617), 2200–2212. doi:10.1089/ten.TEA.2013.0667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma, Y., Ji, Y., Huang, G., Ling, K., Zhang, X., & Bioprinting, X. F. (2015). 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication, 7(4), 044105. doi:10.1088/1758-5090/7/4/044105.

    Article  PubMed  Google Scholar 

  56. Bailey, S. N., Sabatini, D. M., & Stockwell, B. R. (2004). Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proceedings of the National Academy of Sciences of the United States of America, 101(46), 16144–16149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Roth, A., Serbinowski, E., Lee, MY. (2016). Applications of Microarray Bioprinting. In: Lee, MY. (eds) Microarray Bioprinting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46805-1_8

Download citation

Publish with us

Policies and ethics