Skip to main content

Remediation of Environmental Pollutants Using Nanoclays

  • Chapter
  • First Online:
Nanoscience and Plant–Soil Systems

Part of the book series: Soil Biology ((SOILBIOL,volume 48))

Abstract

Nanoclays and clay minerals as the sorbents with unique structure have several applications. These sorbents are mostly cheaper than other materials and considered as the environmental friendly sorbents. Nanoclays can be used to remove and/or stabilize various pollutants in the environment. However, their efficiency depends on their structure as well as properties of pollutants and environmental conditions. They have also a high potential to be used in combination with other sorbents or other remediation approaches. In this chapter not only the basic structure, characteristics, and type of clay minerals are presented, but also their applications in removal of organic and inorganic pollutants from air, water, and soil media are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaal A (2004) Using a natural coagulant for treating wastewater. In: 8th international water technology conference, IWTC8, Alexandria, Egypt. Citeseer, pp 781–791

    Google Scholar 

  • Allen SJ, Ivanova E, Koumanova B (2009) Adsorption of sulfur dioxide on chemically modified natural clinoptilolite. Acid modification. Chem Eng J 152:389–395

    Article  CAS  Google Scholar 

  • Al-Qunaibit M, Mekhemer W, Zaghloul A (2005) The adsorption of Cu (II) ions on bentonite—a kinetic study. J Colloid Interface Sci 283:316–321

    Article  CAS  PubMed  Google Scholar 

  • Angove MJ, Johnson BB, Wells JD (1998) The influence of temperature on the adsorption of cadmium (II) and cobalt (II) on kaolinite. J Colloid Interface Sci 204:93–103

    Article  CAS  PubMed  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  PubMed  Google Scholar 

  • Banat F, Al-Bashir B, Al-Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107:391–398

    Article  CAS  PubMed  Google Scholar 

  • Batista LC, de S Dantas D, de Farias RF (2014) Dye adsorption on inorganic matrices as a new strategy to gas capture: hydrogen sulfide adsorption on Rodhamine B modified kaolinite. Synth React Inorg Met Org Nano Met Chem 44:1398–1400

    Google Scholar 

  • BektaÅŸ N, Ağım BA, Kara S (2004) Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J Hazard Mater 112:115–122

    Article  PubMed  Google Scholar 

  • Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. Handb Clay Sci 1:1–18

    Article  CAS  Google Scholar 

  • Bignon J (2013) Health related effects of phyllosilicates. Springer Science and Business Media, Heidelberg

    Google Scholar 

  • Brigatti M, Galan E, Theng B (2006) Structures and mineralogy of clay minerals. Handb Clay Sci 1:19–69

    Article  CAS  Google Scholar 

  • Cabbar HC, Cakanyıldırım C (2008) Adsorption of p-xylene in dry and moist clay. J Int Environ Appl Sci 3:29–36

    Google Scholar 

  • Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132

    Article  CAS  Google Scholar 

  • Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Chapter 11.1 Clays and clay minerals for pollution control. In: Faïza Bergaya BKGT, Gerhard L (eds) Developments in clay science, vol 1. Elsevier, Amsterdam, pp 625–675

    Google Scholar 

  • Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of lanthanides on smectite and kaolinite. Chem Geol 182:57–68

    Article  CAS  Google Scholar 

  • Eslinger E, Pevear DR (1988) Clay minerals for petroleum geologists and engineers. Society of Economic Paleontologists and Mineralogists

    Google Scholar 

  • Floody MC, Theng B, Reyes P, Mora M (2009) Natural nanoclays: applications and future trends—a Chilean perspective. Clay Miner 44:161–176

    Article  CAS  Google Scholar 

  • Grim R (1962) Applied clay mineralogy. McGraw-Hill, New York

    Google Scholar 

  • Gu X, Evans LJ, Barabash SJ (2010) Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochimica et Cosmochimica Acta 74:5718–5728

    Article  CAS  Google Scholar 

  • Guggenheim S, Adams J, Bain D, Bergaya F, Brigatti MF, Drits V, Formoso ML, Galán E, Kogure T, Stanjek H (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Miner 41:863–877

    Article  CAS  Google Scholar 

  • Inglezakis VJ, Stylianou MA, Gkantzou D, Loizidou MD (2007) Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 210:248–256

    Article  CAS  Google Scholar 

  • Inskeep WP, Baham J (1983) Adsorption of Cd (II) and Cu (II) by Na-montmorillonite at low surface coverage. Soil Sci Soc Am J 47:660–665

    Article  CAS  Google Scholar 

  • Ivanova E, Koumanova B (2009) Adsorption of sulfur dioxide on natural clinoptilolite chemically modified with salt solutions. J Hazard Mater 167:306–312

    Article  CAS  PubMed  Google Scholar 

  • Jackson T (1998) The biogeochemical and ecological significance of interactions between colloidal minerals and trace elements. In: Parker A, Rae JE (eds) Environmental interactions of clays. Springer, Berlin, pp 93–205

    Chapter  Google Scholar 

  • Karapinar N, Donat R (2009) Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination 249:123–129

    Article  CAS  Google Scholar 

  • Konig TN, Shulami S, Rytwo G (2012) Brine wastewater pretreatment using clay minerals and organoclays as flocculants. Appl Clay Sci 67:119–124

    Article  Google Scholar 

  • Kühnel R (1990) The modern days of clays. Appl Clay Sci 5:135–143

    Article  Google Scholar 

  • McLaren R, Lawson D, Swift R (1986) Sorption and desorption of cobalt by soils and soil components. J Soil Sci 37:413–426

    Article  CAS  Google Scholar 

  • Mobasser S, Taha MR (2013) Adsorption of PCB from contaminated soil using nano clay particles. J Ind Pollut Contr 29:145–148

    CAS  Google Scholar 

  • Molina-Sabio M, González J, Rodríguez-Reinoso F (2004) Adsorption of NH 3 and H 2 S on activated carbon and activated carbon-sepiolite pellets. Carbon 42:448–450

    Article  CAS  Google Scholar 

  • Morgan RC (1995) Soil erosion and conservation. Longman, London

    Google Scholar 

  • Morozov G, Breus V, Nekludov S, Breus I (2014) Sorption of volatile organic compounds and their mixtures on montmorillonite at different humidity. Colloids Surfaces A Physicochem Eng Aspect 454:159–171

    Article  CAS  Google Scholar 

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    Article  CAS  Google Scholar 

  • Murray HH (2006) Applied clay mineralogy: occurrences, processing and applications of Kaolins, Bentonites, Palygorskitesepiolite, and common clays. Elsevier, Amsterdam

    Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Thanh D, Block K, Bandosz TJ (2005) Adsorption of hydrogen sulfide on montmorillonites modified with iron. Chemosphere 59:343–353

    Article  CAS  PubMed  Google Scholar 

  • Ozekmekci M, Salkic G, Fellah MF (2015) Use of zeolites for the removal of H2S: a mini-review. Fuel Process Technol 139:49–60. doi:10.1016/j.fuproc.2015.08.015

    Article  CAS  Google Scholar 

  • Petrofanov V (2012) Role of the soil particle-size fractions in the sorption and desorption of potassium. Eurasian Soil Sci 45:598–611

    Article  CAS  Google Scholar 

  • Pires J, Pinto M (2010) Pillared interlayered clays as adsorbents of gases and vapors. In: Gil A, Korili SA, Trujillano R, Vicente MA (eds) Pillared clays and related catalysts. Springer, Heidelberg, pp 23–42

    Chapter  Google Scholar 

  • Pisani P, Mirsal I (2004) Soil pollution. Origin, monitoring & remediation. Springer, Heidelberg

    Google Scholar 

  • Quinton JN, Catt JA (2007) Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. Environ Sci Technol 41:3495–3500

    Article  CAS  PubMed  Google Scholar 

  • Rahmani A, Samadi M, Ehsani H (2009) Investigation of clinoptilolite natural zeolite regeneration by air stripping followed by ion exchange for removal of ammonium from aqueous solutions. J Environ Health Sci Eng 6:167–172

    CAS  Google Scholar 

  • Riser-Roberts E (1992) Bioremediation of petroleum contaminated sites. CK Smoley, Boca Raton, FL, p 197

    Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Santin A (2014) Remediation of contaminated soil by nano-to-micro clay particles, case study with diclofenac. Master thesis, University of Padova, Italy

    Google Scholar 

  • Schnitzer M, Kodama H (1977) Reactions of minerals with soil humic substances. Miner Soil Environ 21:741–770

    Google Scholar 

  • Sharpley A, Smith S, Stewart B, Mathers A (1984) Forms of phosphorus in soil receiving cattle feedlot waste. J Environ Qual 13:211–215

    Article  Google Scholar 

  • Stepova KV, Maquarrie DJ, Krip IM (2009) Modified bentonites as adsorbents of hydrogen sulfide gases. Appl Clay Sci 42:625–628

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Tahir S, Rauf N (2004) Removal of Fe (II) from the wastewater of a galvanized pipe manufacturing industry by adsorption onto bentonite clay. J Environ Manag 73:285–292

    Article  CAS  Google Scholar 

  • Terce M, Calvet R (1977) Some observations on the role of Al and Fe and their hydroxides in the adsorption of herbicides by montmorillonite. Sonderdruck, Zeitschriftfür Pflanzenkrankheiten und Pflanzenschutz, Sonderheft VIII Stuttgart-Hohenheim

    Google Scholar 

  • Theng BKG (1974) The chemistry of clay-organic reactions. Wiley, London, p 343

    Google Scholar 

  • Undabeytia T, Nir S, Rytwo G, Morillo E, Maqueda C (1998) Modeling adsorption–desorption processes of Cd on montmorillonite. Clays Clay Miner 46:423–428

    Article  CAS  Google Scholar 

  • Undabeytia T, Nir S, Rytwo G, Serban C, Morillo E, Maqueda C (2002) Modeling adsorption-desorption processes of Cu on edge and planar sites of montmorillonite. Environ Sci Technol 36:2677–2683

    Article  CAS  PubMed  Google Scholar 

  • Veli S, Alyüz B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149:226–233

    Article  CAS  PubMed  Google Scholar 

  • Vieira MGA, Almeida Neto Ad, Gimenes ML, Silva Md (2011) Desulphuration of SO2 by adsorption in fluidized bed with zeolite. Chem Eng Trans 24:1219–1224

    Google Scholar 

  • Wei Y, Liang X, Lin W, Guo C, Dang Z (2015) Clay mineral dependent desorption of pyrene from soils by single and mixed anionic–nonionic surfactants. Chem Eng J 264:807–814

    Article  CAS  Google Scholar 

  • Wilkinson S, Grunes D, Sumner M (2000) Nutrient interactions in soil and plant nutrition. CRC, Boca Raton, FL

    Google Scholar 

  • Yuan G (2004) Natural and modified nanomaterials as sorbents of environmental contaminants. J Environ Sci Health Part A 39:2661–2670

    Article  Google Scholar 

  • Yuan G, Wu L (2007) Allophane nanoclay for the removal of phosphorus in water and wastewater. Sci Technol Adv Mater 8:60–62

    Article  CAS  Google Scholar 

  • Zhang Q, Higuchi T, Sekine M, Imai T (2009) Removal of sulphur dioxide using palygorskite in a fixed bed adsorber. Environ Technol 30:1529–1538

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Njuguna J (2014) 7 – nanolayered silicates/clay minerals: uses and effects on health. Health and Environmental Safety of Nanomaterials. Woodhead Publishing, Cambridge, pp. 133–146

    Google Scholar 

  • Zhu L, Yang K, Lou B, Yuan B (2003) A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. Water Res 37:4792–4800

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Soleimani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soleimani, M., Amini, N. (2017). Remediation of Environmental Pollutants Using Nanoclays. In: Ghorbanpour, M., Manika, K., Varma, A. (eds) Nanoscience and Plant–Soil Systems. Soil Biology, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_9

Download citation

Publish with us

Policies and ethics