Skip to main content

Calicheamicin Antibody-Drug Conjugates for Liquid and Solid Tumor Indications

  • Chapter
  • First Online:
Next Generation Antibody Drug Conjugates (ADCs) and Immunotoxins

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Antibody-drug conjugates (ADCs) for solid tumor indications have traditionally employed microtubule disrupting agents. We recently demonstrated utility of calicheamicin, a double-strand DNA break inducing payload, when conjugated to an antibody targeting a cell surface antigen expressed on the surface of cancer stem cells (CSCs) or tumor-initiating cells (TICs) and Ephrin-A4 (EFNA4). When tested in preclinical models of breast and ovarian cancer, the hydrazone linker-based calicheamicin conjugate (PF-06647263) displayed robust antitumor activity, and the compound is currently being evaluated for clinical benefit to cancer patients. Calicheamicin is a member of a highly potent enediyne class of deoxyribonucleic acid (DNA)-damaging cytotoxic natural products with a unique mechanism of action that involves scission of DNA. Two additional calicheamicin-based ADCs are in late-stage clinical development, including the ADC, inotuzumab ozogamicin, targeting CD22-positive, liquid tumors including NHL and ALL, and the CD33-targeting gemtuzumab ozogamicin, targeting AML.

The recent expansion of the utility of calicheamicin conjugates to solid tumors may have a broader impact on ADC development, as their mechanism of action leading to tumor cell death is entirely different from microtubule disrupting agents. In particular, calicheamicin impacts quiescent or dormant cells as well as cycling cells, whereas microtubule inhibitors impact only cycling cells. Herein, we review the mechanism and key pharmacological findings of calicheamicin conjugates targeting liquid and solid tumors and discuss potential areas for future development of calicheamicin conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537

    Article  CAS  PubMed  Google Scholar 

  • Bellomo G, Vairetti M, Stivala L, Mirabelli F, Richelmi P, Orrenius S (1992) Demonstration of nuclear compartmentalization of glutathione in hepatocytes. Proc Natl Acad Sci U S A 89(10):4412–4416

    Google Scholar 

  • Bernstein ID (2000) Monoclonal antibodies to the myeloid stem cells: therapeutic implications of CMA-676, a humanized anti-CD33 antibody calicheamicin conjugate. Leukemia 14:474–475

    Article  CAS  PubMed  Google Scholar 

  • Bouchard H, Viskov C, Garcia-Echeverria C (2014) Antibody-drug conjugates-a new wave of cancer drugs. Bioorg Med Chem Lett 24:5357–5363

    Article  CAS  PubMed  Google Scholar 

  • Breccia M, Cimino G, Diverio D, Gentilini F, Mandelli F, Lo Coco F (2007) Sustained molecular remission after low dose gemtuzumab-ozogamicin in elderly patients with advanced acute promyelocytic leukemia. Haematologica 92:1273–1274

    Article  CAS  PubMed  Google Scholar 

  • Burleigh A, McKinney S, Brimhall J, Yap D, Eirew P, Poon S, Ng V, Wan A, Prentice L, Annab L et al (2015) A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation. Breast Cancer Res 17:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN, Legrand O, Thomas X, Turlure P, Reman O et al (2012) Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Damelin M, Bankovich A, Park A, Aguilar J, Anderson W, Santaguida M, Aujay M, Fong S, Khandke K, Pulito V et al (2015) Anti-EFNA4 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin Cancer Res 21:4165–4173

    Article  CAS  PubMed  Google Scholar 

  • Damle NK (2004) Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • de Vries JF, Zwaan CM, De Bie M, Voerman JS, den Boer ML, van Dongen JJ, van der Velden VH (2012) The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia 26:255–264

    Article  PubMed  Google Scholar 

  • Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Toxicol 5:311–332

    Article  CAS  PubMed  Google Scholar 

  • DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C et al (2004a) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103:1807–1814

    Article  CAS  PubMed  Google Scholar 

  • DiJoseph JF, Goad ME, Dougher MM, Boghaert ER, Kunz A, Hamann PR, Damle NK (2004b) Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10:8620–8629

    Article  CAS  PubMed  Google Scholar 

  • DiJoseph JF, Dougher MM, Kalyandrug LB, Armellino DC, Boghaert ER, Hamann PR, Moran JK, Damle NK (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249

    Article  CAS  PubMed  Google Scholar 

  • Dijoseph JF, Dougher MM, Armellino DC, Evans DY, Damle NK (2007) Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21:2240–2245

    Article  CAS  PubMed  Google Scholar 

  • DiJoseph JF, Dougher MM, Evans DY, Zhou BB, Damle NK (2011) Preclinical anti-tumor activity of antibody-targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specific immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with CVP or CHOP. Cancer Chemother Pharmacol 67:741–749

    Article  CAS  PubMed  Google Scholar 

  • Dinndorf PA, Andrews RG, Benjamin D, Ridgway D, Wolff L, Bernstein ID (1986) Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 67:1048–1053

    CAS  PubMed  Google Scholar 

  • Drak J, Iwasawa N, Danishefsky S, Crothers DM (1991) The carbohydrate domain of calicheamicin gamma I1 determines its sequence specificity for DNA cleavage. Proc Natl Acad Sci U S A 88:7464–7468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Yu W, Huang L, Zhao M, Li X (2012) Ephrin-a4 is involved in retinal neovascularization by regulating the VEGF signaling pathway. Invest Ophthalmol Vis Sci 53:1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Ellestad GA (2011) Structural and conformational features relevant to the anti-tumor activity of calicheamicin γ1I. Chirality 23:660–671

    Article  CAS  PubMed  Google Scholar 

  • Eramo A, Haas TL, De Maria R (2010) Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene 29:4625–4635

    Article  CAS  PubMed  Google Scholar 

  • Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID, Dow LW, Najfeld V, Veith R (1987) Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 317:468–473

    Article  CAS  PubMed  Google Scholar 

  • Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spisek R (2011) Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 71:4821–4833

    Article  CAS  PubMed  Google Scholar 

  • Gerber HP, Koehn FE, Abraham RT (2013) The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep 30:625–639

    Article  CAS  PubMed  Google Scholar 

  • Griffin JD, Linch D, Sabbath K, Larcom P, Schlossman SF (1984) A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res 8:521–534

    Article  CAS  PubMed  Google Scholar 

  • Grimwade D, Enver T (2004) Acute promyelocytic leukemia: where does it stem from? Leukemia 18:375–384

    Article  CAS  PubMed  Google Scholar 

  • Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clinical Chem 50:490–499

    Article  CAS  Google Scholar 

  • Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Shochat D et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58

    Article  CAS  PubMed  Google Scholar 

  • Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, Estey EH, Dombret H, Chevret S, Ifrah N et al (2014) Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol 15:986–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342

    CAS  PubMed  Google Scholar 

  • Ho SN, Boyer SH, Schreiber SL, Danishefsky SJ, Crabtree GR (1994) Specific inhibition of formation of transcription complexes by a calicheamicin oligosaccharide: a paradigm for the development of transcriptional antagonists. Proc Natl Acad Sci U S A 91:9203–9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoelzer D (2014) Dose-adjusted EPOCH-R for Burkitt lymphoma. Clin Adv Hematol Oncol 12(11):777–779

    Google Scholar 

  • Ikemoto N, Kumar RA, Ling TT, Ellestad GA, Danishefsky SJ, Patel DJ (1995) Calicheamicin-DNA complexes: warhead alignment and saccharide recognition of the minor groove. Proc Natl Acad Sci U S A 92:10506–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John B, Herrin BR, Raman C, Wang YN, Bobbitt KR, Brody BA, Justement LB (2003) The B cell coreceptor CD22 associates with AP50, a clathrin-coated pit adapter protein, via tyrosine-dependent interaction. J Immunol 170:3534–3543

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Haun RS, Tsai SC, Moss J, Vaughan M (1992) Characterization of the human gene encoding ADP-ribosylation factor 1, a guanine nucleotide-binding activator of cholera toxin. J Biol Chem 267:9028–9034

    CAS  PubMed  Google Scholar 

  • Lin CC, Anseth KS (2011) Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc Natl Acad Sci U S A 108:6380–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo-Coco F, Cimino G, Breccia M, Noguera NI, Diverio D, Finolezzi E, Pogliani EM, Di Bona E, Micalizzi C, Kropp M et al (2004) Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 104:1995–1999

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N et al (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • McCulloch EA (1983) Stem cells in normal and leukemic hemopoiesis (Henry Stratton lecture, 1982). Blood 62:1–13

    CAS  PubMed  Google Scholar 

  • Moss A, Alvares D, Meredith-Middleton J, Robinson M, Slater R, Hunt SP, Fitzgerald M (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur J Neurosci 22:2413–2421

    Article  PubMed  Google Scholar 

  • Mullard A (2013) Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov 12:329–332

    Article  CAS  PubMed  Google Scholar 

  • Muller AM, Duque J, Shizuru JA, Lubbert M (2008) Complementing mutations in core binding factor leukemias: from mouse models to clinical applications. Oncogene 27:5759–5773

    Article  CAS  PubMed  Google Scholar 

  • Nicolaou KC, Smith AL, Yue EW (1993) Chemistry and biology of natural and designed enediynes. Proc Natl Acad Sci U S A 90:5881–5888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  PubMed  Google Scholar 

  • Olejniczak SH, Stewart CC, Donohue K, Czuczman MS (2006) A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol Investig 35:93–114

    Article  CAS  Google Scholar 

  • Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6:462–475

    Article  CAS  PubMed  Google Scholar 

  • Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard JA, Alonzo TA, Loken M, Gerbing RB, Ho PA, Bernstein ID, Raimondi SC, Hirsch B, Franklin J, Walter RB et al (2012) Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood 119:3705–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricart AD (2011) Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res 17:6417–6427

    Article  CAS  PubMed  Google Scholar 

  • Rosfjord E, Lucas J, Li G, Gerber HP (2014) Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol 91:135–143

    Article  CAS  PubMed  Google Scholar 

  • Sapra P, Hooper AT, O’Donnell CJ, Gerber HP (2011) Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs 20:1131–1149

    Article  CAS  PubMed  Google Scholar 

  • Shor B, Gerber HP, Sapra P (2015) Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol Immunol 67:107–116

    Article  CAS  PubMed  Google Scholar 

  • Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15:419–433

    Article  CAS  PubMed  Google Scholar 

  • Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491

    Article  CAS  PubMed  Google Scholar 

  • Thorson JS, Sievers EL, Ahlert J, Shepard E, Whitwam RE, Onwueme KC, Ruppen M (2000) Understanding and exploiting nature’s chemical arsenal: the past, present and future of calicheamicin research. Curr Pharm Des 6:1841–1879

    Article  CAS  PubMed  Google Scholar 

  • Walter RB, Appelbaum FR, Estey EH, Bernstein ID (2012) Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119:6198–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zein N, Sinha AM, McGahren WJ, Ellestad GA (1988) Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Gerber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gerber, HP., Damelin, M., Sapra, P. (2017). Calicheamicin Antibody-Drug Conjugates for Liquid and Solid Tumor Indications. In: Grawunder, U., Barth, S. (eds) Next Generation Antibody Drug Conjugates (ADCs) and Immunotoxins. Milestones in Drug Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-46877-8_4

Download citation

Publish with us

Policies and ethics