Skip to main content

Dense Tracking with Range Cameras Using Key Frames

  • Conference paper
  • First Online:
Robotics (SBR 2016, LARS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 619))

Included in the following conference series:

  • 1031 Accesses

Abstract

We present a low cost localization system that exploits dense image information to continuously track the position of a range camera in 6DOF. This work has two main contributions: First, the localization of the camera is performed with respect to a set of keyframes selected according to a spatial criteria producing a less populated and more uniform distribution of keyframes in space. This allows us to avoid the computational overload caused by having to estimate a depthmap at the frame rate of the camera as it is common in other dense sequential methods. Second, we propose a two-stage approach to compute the current location of the camera with respect to its closest keyframe. During the first stage, our system calculates an initial relative pose estimate from a sparse set of 3D to 2D point correspondences. This estimate is then refined during the second stage using a dense image alignment. The refinement step is stated as a Non Linear Least Squares (NLQs) optimisation embedded in a coarse to fine approach that minimizes the photo-consistency error between the current image and a warped version of the image associated to the closest keyframe and its depth map.

To validate the accuracy of our system, we conducted experiments using datasets with perfectly known trajectory and with both, perfect ray-traced images and images with noise and blur. We also evaluate the accuracy of the system using datasets with RGBD images taken at different frame-rates, and the improvements in convergence due to our coarse-to-find approach. Our assessment shows that our system is able to achieve millimeter accuracy. Most of the expensive calculations are carried out by exploiting parallel computation on a GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework: Part 1. Int. J. Comput. Vis. (IJCV) 3(56), 221–255 (2004)

    Article  Google Scholar 

  2. Bylow, E., Sturm, J., Kerl, C., Kahl, F., Cremers, D.: Real-time camera tracking and 3D reconstruction using signed distance functions. In: Robotics: Science and Systems Conference (RSS), June 2013

    Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 1(40), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Civera, J., Davison, A.J., Montiel, J.M.M.: Inverse depth parametrization for monocular SLAM. IEEE Trans. Robot. 24(5), 932–945 (2008)

    Article  Google Scholar 

  5. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proceedings of the International Conference on Computer Vision, Nice, October 2003

    Google Scholar 

  6. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  7. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10605-2_54

    Google Scholar 

  8. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1449–1456, December 2013

    Google Scholar 

  9. Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-time camera tracking: when is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_17

    Chapter  Google Scholar 

  10. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

    Book  MATH  Google Scholar 

  11. Klein, G., Murray, D.W.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality, November 2007

    Google Scholar 

  12. Klein, G., Murray, D.: Improving the agility of keyframe-based SLAM. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 802–815. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_59

    Chapter  Google Scholar 

  13. Lovegrove, S., Davison, A.J.: Real-time spherical mosaicing using whole image alignment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 73–86. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_6

    Chapter  Google Scholar 

  14. Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1498–1505, June 2010. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5539794

  15. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136, October 2011. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6162880

  16. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. Department of Computing, Imperial College London, UK (2012)

    Google Scholar 

  17. Piniés, P., Paz, L.M., Gálvez-López, D., Tardós, J.D.: CI-graph simultaneous localization and mapping for three-dimensional reconstruction of large and complex environments using a multicamera system. J. Field Robot. 27(5), 561–586 (2010)

    Article  Google Scholar 

  18. Silveira, G., Malis, E., Rives, P.: An efficient direct method for improving visual SLAM, 10–14 April 2007

    Google Scholar 

  19. Steinbruker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pp. 719–722 (2011). doi:10.1109/ICCVW.2011.6130321

  20. Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogramm. Remote Sens. 60, 284–294 (2006)

    Article  Google Scholar 

  21. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15986-2_2

    Chapter  Google Scholar 

  22. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  23. Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Graduate Text in Mathematics, vol. 102. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundanción CEIBA for the financial support that has made the development of this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Díaz, A., Paz, L., Caicedo, E., Piniés, P. (2016). Dense Tracking with Range Cameras Using Key Frames. In: Santos Osório, F., Sales Gonçalves, R. (eds) Robotics. SBR LARS 2016 2016. Communications in Computer and Information Science, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-319-47247-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47247-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47246-1

  • Online ISBN: 978-3-319-47247-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics