Skip to main content

Simulating Thomas Kuhn’s Scientific Revolutions: The Example of the Paradigm Change from Systems Dynamics to Agent Based Modelling

  • Conference paper
  • First Online:
Advances in Social Simulation 2015

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 528))

  • 1235 Accesses

Abstract

Based on evolutionary game theory, this paper presents a model that allows to reproduce different patterns of change of the main paradigm of a scientific community. One of these patterns is the classical scientific revolution of Thomas Kuhn (The Structure of Scientific Revolutions. University of Chicago Press, Chicago 1962), which completely replaces an old paradigm by a new one. Depending on factors like the acceptance rate of extra-paradigmatic works by the reviewers of scientific journals, there are however also other forms of change, which may e.g. lead to the coexistence of an old and a new paradigm. After analysing the different types of paradigm-changes and the conditions of their occurrence by means of EXCEL based simulation runs, the article explores the applicability of the model to a particular case: the spread of agent based modelling at the expense of the older systems dynamics approach. For the years between 1993 and 2012 the model presented in this article reproduces the observed bibliometric data remarkably well: it thus seems to be empirically confirmed.

This is a substantially enlarged and improved version of an article in German language, published by the same author: G. Mueller, Die Krise der wissenschaftlichen Routine. In: Verhandlungen des 37. Kongresses der Deutschen Gesellschaft für Soziologie. http://www. publikationen.soziologie.de. Bochum, 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From (5a) and (5b) follows ΔS n  = −ΔS o such that the sum S n +S o is time-invariant and always yields 1 (see formula (1b)).

  2. 2.

    By definition A e  = 0 and E o  = 0 are the lowest possible values of these two parameters. Similarly, since A e  ≤ A i  = 1 and E o  ≤ E n  = 1, A e and E o cannot exceed the value 1.

  3. 3.

    P n + P o = (F n \( \raisebox{2pt}{$\scriptstyle*$} \)S n ) / (F n \( \raisebox{2pt}{$\scriptstyle*$} \)S n + F o \( \raisebox{2pt}{$\scriptstyle*$} \)S o ) + (F o \( \raisebox{2pt}{$\scriptstyle*$} \)S o ) / (F n \( \raisebox{2pt}{$\scriptstyle*$} \)S n + F o \( \raisebox{2pt}{$\scriptstyle*$} \)S o )= (F n \( \raisebox{2pt}{$\scriptstyle*$} \)S n + F o \( \raisebox{2pt}{$\scriptstyle*$} \)S o ) / (F n \( \raisebox{2pt}{$\scriptstyle*$} \)S n + F o \( \raisebox{2pt}{$\scriptstyle*$} \)S o ) = 1

  4. 4.

    Model-fit = Square root of (Sum of squares between observed and simulated P n /20) = 0.0041

  5. 5.

    As explained earlier in Sect. 3.1, A e  = 1 is a relative and not an absolute acceptance rate.

References

  1. Kuhn, T.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1962)

    Google Scholar 

  2. Tracy, J., et al.: Tracking trends in psychological science. In: Dalton, T., Evans, R. (eds.) The Life Cycle of Psychological Ideas. Kluwer, New York (2004). Chapter 5

    Google Scholar 

  3. Edmonds, B., et al.: Simulating the Social Processes of Science. J. Artif. Soc. Soc. Simulat. http://jasss.soc.surrey.ac.uk/14/4/14.html (2011)

  4. Sobkowicz, P.: Simulations of opinion changes in scientific communities. Scientometrics 87, 221–232 (2011)

    Article  Google Scholar 

  5. Sterman, J.: The growth of knowledge: testing a theory of scientific revolutions with a formal model. Technol. Forecast. Soc. Change 28, 93–122 (1985)

    Article  Google Scholar 

  6. Sterman, J., Wittenberg, J.: Path dependence, competition, and succession in the dynamics of scientific revolution. Organ. Sci. 10, 322–341 (1999)

    Article  Google Scholar 

  7. Gilbert, N., Troitzsch, K.: Simulation for the Social Scientist. Open University Press, Maidenhead (2011)

    Google Scholar 

  8. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  9. Webb, J.: Game Theory: Decisions, Interaction and Evolution. Springer, London (2007)

    MATH  Google Scholar 

  10. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge, MA (1996)

    MATH  Google Scholar 

  11. Axelrod, R.: The Evolution of Cooperation. Penguin, London (1990)

    MATH  Google Scholar 

  12. Hanauske, M.: Evolutionary game theory and complex networks of scientific information. In: Scharnhorst, A., et al. (eds.) Models of Science Dynamics. Springer, Berlin (2012). Chapter 5

    Google Scholar 

  13. Mueller, G.: Universities as producers of evolutionarily stable signs of excellence for academic labor markets? Semiotica 175, 429–450 (2009)

    Google Scholar 

  14. Mueller, G.: The dynamics and evolutionary stability of cultures of corruption: theoretical and empirical analyses. Adv. Complex Syst. 15(6) (2012)

    Google Scholar 

  15. Bornmann, L., Daniel, H.-D.: The luck of the referee draw: the effect of exchanging reviews. Learned Publ. 22, 117–125 (2009)

    Article  Google Scholar 

  16. Daniel, H.-D.: Guardians of Science: Fairness and Reliability of Peer Review. VCH Verlagsgesellschaft, Weinheim (1993)

    Book  Google Scholar 

  17. Shatz, D.: Peer Review: A Critical Inquiry. Rowman & Littlefield, Lanham (2004)

    Google Scholar 

  18. Gilbert, N.: Agent-Based Models. Sage, Los Angeles (2007)

    Google Scholar 

  19. Forrester, J.: Industrial Dynamics. MIT Press, Cambridge, MA (1961)

    Google Scholar 

  20. Schelling, T.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)

    Article  MATH  Google Scholar 

  21. Scholar Google: Title-word entries “Agent based”, “System dynamics”, “Systems dynamics”. http://scholar.google.de/. Accessed 30 Oct 2014

  22. Mueller, G.: Die Krise der wissenschaftlichen Routine: Computer-Simulationen zu Kuhns “Structure of Scientific Revolutions.” In: Lessenich, S. (ed.) Routinen der Krise — Krise der Routinen. Verhandlungen des 37. Kongresses der Deutschen Gesellschaft für Soziologie in Trier 2014. http://www.publikationen.soziologie.de/. Bochum (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg P. Mueller .

Editor information

Editors and Affiliations

A.1 Data Appendix

A.1 Data Appendix

Table A1 Numbers and shares of publications in the agent based modelling paradigm and the systems dynamics paradigm

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mueller, G.P. (2017). Simulating Thomas Kuhn’s Scientific Revolutions: The Example of the Paradigm Change from Systems Dynamics to Agent Based Modelling. In: Jager, W., Verbrugge, R., Flache, A., de Roo, G., Hoogduin, L., Hemelrijk, C. (eds) Advances in Social Simulation 2015. Advances in Intelligent Systems and Computing, vol 528. Springer, Cham. https://doi.org/10.1007/978-3-319-47253-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47253-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47252-2

  • Online ISBN: 978-3-319-47253-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics