Skip to main content

Antimicrobial Susceptibility Testing Methods for Bacterial Pathogens

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Gone are the days when the antimicrobial susceptibility pattern of a bacterial isolate could be predicted simply on the basis of its species identification. Although Streptococcus pyogenes isolates remain susceptible to penicillin, one has to continually ask—for how long? With the discovery of strains of Staphylococcus aureus that are highly resistant to vancomycin [1], the emergence of carbapenem-resistant Enterobacteriaceae, and strains of Acinetobacter species that are pan resistant [2, 3], the role of antimicrobial susceptibility testing in guiding therapy for infectious diseases is becoming increasingly important [4]; it is a key function of clinical microbiology laboratories. Results guide physicians in their selection of appropriate antimicrobial therapy for patients with infections. Yet, ironically, many of these novel resistance phenotypes are not easily detected using the automated susceptibility testing methods so prevalent in today’s clinical laboratories [5, 6]. The ability of the clinical laboratory to detect emerging resistance profiles is often directly related to the extra efforts expanded to catch novel resistance mechanisms. Although resistant bacteria were common previously only in intensive care units of hospitals, multidrug resistance has become an issue among strains of community-acquired pathogens such as Salmonella, Shigella, and even Neisseria gonorrhoeae [7–9]. To complicate matters even further, resistant organisms that arise in the community are now also spreading into healthcare settings [10, 11]. Thus, it is imperative that changes in resistance patterns of a wide range of bacterial pathogens be monitored continually to insure optimal treatment both of the individual patients and for maintaining the efficacy of empiric therapy regimens. Antimicrobial susceptibility test methods include disk diffusion and minimal inhibitory concentration (MIC) methods, such as broth microdilution, agar dilution, and agar gradient diffusion. MIC tests often utilize semi- or fully automated platforms to decrease time to results and improve workflow. Microbiology laboratories often employ supplemental tests to maximize detection of unusual or borderline-resistant phenotypes or emerging resistance mechanisms that may be missed by standard methods. Qualitative results (susceptible, intermediate, or resistant) for antimicrobial agents may be accompanied by quantitative values for MIC test to help guide dosing regimens. Molecular-based tests, such as polymerase chain reaction assays and film arrays, are used with increasing frequency to provide rapid results, often within 1 h, for resistance genes or mutations associated with antimicrobial resistance to improve antimicrobial therapy. Such assays have gained widespread acceptance for methicillin-resistant Staphylococcus aureus (MRSA) in positive blood cultures, vancomycin resistance genes in enterococci, and multidrug-resistant strains of tuberculosis from patients with respiratory disease. This chapter will explore in detail the methods used for antimicrobial susceptibility testing of bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348(14):1342–7.

    Article  PubMed  Google Scholar 

  2. Mahgoub S, Ahmed J, Glatt AE. Completely resistant Acinetobacter baumannii strains. Infect Control Hosp Epidemiol. 2002;23(8):477–9.

    Article  PubMed  Google Scholar 

  3. Wang SH, Sheng WH, Chang YY, Wang LH, Lin HC, Chen ML, Pan HJ, Ko WJ, Chang SC, Lin FY. Healthcare-associated outbreak due to pan-drug resistant Acinetobacter baumannii in a surgical intensive care unit. J Hosp Infect. 2003;53(2):97–102.

    Article  CAS  PubMed  Google Scholar 

  4. McGowan Jr JE, Tenover FC. Confronting bacterial resistance in healthcare settings: a crucial role for microbiologists. Nat Rev Microbiol. 2004;2:251–8.

    Article  CAS  PubMed  Google Scholar 

  5. Steward CD, Mohammed JM, Swenson JM, Stocker SA, Williams PP, Gaynes RP, McGowan Jr JE, Tenover FC. Antimicrobial susceptibility testing of carbapenems: multicenter validity testing and accuracy levels of five antimicrobial test methods for detecting resistance in Enterobacteriaceae and Pseudomonas aeruginosa isolates. J Clin Microbiol. 2003;41(1):351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Woodford N, Eastaway AT, Ford M, Leanord A, Keane C, Quayle RM, Steer JA, Zhang J, Livermore DM. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J Clin Microbiol. 2010;48(8):2999–3002.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bolan GA, Sparling PF, Wasserheit JN. The emerging threat of untreatable gonococcal infection. N Engl J Med. 2012;366(6):485–7.

    Article  PubMed  Google Scholar 

  8. Lu Y, Zhao H, Sun J, Liu Y, Zhou X, Beier RC, Wu G, Hou X. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China. PLoS One. 2014;9(5), e96050.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shiferaw B, Solghan S, Palmer A, Joyce K, Barzilay EJ, Krueger A, Cieslak P. Antimicrobial susceptibility patterns of shigella isolates in foodborne diseases active surveillance network (FoodNet) sites, 2000–2010. Clin Infect Dis. 2012;54 Suppl 5:S458–63.

    Article  CAS  PubMed  Google Scholar 

  10. Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R. Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis. 2006;42(3):389–91.

    Article  PubMed  Google Scholar 

  11. Saiman L, O’Keefe M, Graham 3rd PL, Wu F, Said-Salim B, Kreiswirth B, LaSala A, Schlievert PM, Della-Latta P. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin Infect Dis. 2003;37(10):1313–19.

    Article  PubMed  Google Scholar 

  12. Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D, Picton E, Dickenson R, Denis O, Johnson D, Chapin K. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol. 2009;47(3):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rand KH, Delano JP. Direct identification of bacteria in positive blood cultures: comparison of two rapid methods, FilmArray and mass spectrometry. Diagn Microbiol Infect Dis. 2014;79(3):293–7.

    Article  CAS  PubMed  Google Scholar 

  14. Forrest GN, Roghmann MC, Toombs LS, Johnson JK, Weekes E, Lincalis DP, Venezia RA. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother. 2008;52(10):3558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barry AL. Standardization of antimicrobial susceptibility testing. Clin Lab Med. 1989;9(2):203–19.

    CAS  PubMed  Google Scholar 

  16. Fleming A. On the antibacterial action of cultures of a penicillin with a special reference to their use in the isolate of B. influenzae. Br J Exp Pathol. 1929;10:226–9.

    CAS  PubMed Central  Google Scholar 

  17. Sherris JC. Antimicrobic susceptibility testing. A personal perspective. Clin Lab Med. 1989;9(2):191–202.

    CAS  PubMed  Google Scholar 

  18. Ericsson H. The paper disc method for determination of bacterial sensitivity to antibiotics. Studies on the accuracy of the technique. Scand J Clin Lab Invest. 1960;12:408–13.

    Article  CAS  PubMed  Google Scholar 

  19. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6.

    CAS  PubMed  Google Scholar 

  20. Register F. Rules and regulations: antibiotic susceptibility discs. Fed Regist. 1972;37:20525.

    Google Scholar 

  21. Swenson JM, Williams PP, Killgore G, O’Hara CM, Tenover FC. Performance of eight methods, including two new rapid methods, for detection of oxacillin resistance in a challenge set of Staphylococcus aureus organisms. J Clin Microbiol. 2001;39(10):3785–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Juretschko S, Labombardi VJ, Lerner SA, Schreckenberger PC. Accuracy of {beta}-lactam susceptibility testing results for Pseudomonas aeruginosa among four automated systems (BD Phoenix, MicroScan WalkAway, Vitek, Vitek 2). J Clin Microbiol. 2007;45(4):1339–42.

    Google Scholar 

  23. Huang MB, Baker CN, Banerjee S, Tenover FC. Accuracy of the E test for determining antimicrobial susceptibilities of staphylococci, enterococci, Campylobacter jejuni, and gram-negative bacteria resistant to antimicrobial agents. J Clin Microbiol. 1992;30(12):3243–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jorgensen JH, Ferraro MJ, McElmeel ML, Spargo J, Swenson JM, Tenover FC. Detection of penicillin and extended-spectrum cephalosporin resistance among Streptococcus pneumoniae clinical isolates by use of the E test. J Clin Microbiol. 1994;32(1):159–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Croco JL, Erwin ME, Jennings JM, Putnam LR, Jones RN. Evaluation of the Etest for antimicrobial spectrum and potency determinations of anaerobes associated with bacterial vaginosis and peritonitis. Diagn Microbiol Infect Dis. 1994;20(4):213–19.

    Article  CAS  PubMed  Google Scholar 

  26. Rennie RP, Turnbull L, Brosnikoff C, Cloke J. First comprehensive evaluation of the M.I.C. evaluator device compared to Etest and CLSI broth microdilution for MIC testing of aerobic Gram-positive and Gram-negative bacterial species. J Clin Microbiol. 2012;50(4):1147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clinical and Laboratory Standards Instutute. Performance standards for antimicrobial susceptibility testing: fifteenth informational supplement, CLSI, document M100-S15. Wayne, Pa: CLSI; 2005.

    Google Scholar 

  28. Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk diffusion susceptibility testing of infrequently isolated or fastidious bacteria; Document M45-A2. Approved guideline-second edition. Wayne, PA: Clinical and Laboratory Standards Institute; 2010.

    Google Scholar 

  29. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Felten A, Grandry B, Lagrange PH, Casin I. Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the Vitek 2 system, and the MRSA-screen latex agglutination test. J Clin Microbiol. 2002;40(8):2766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skov R, Smyth R, Clausen M, Larsen AR, Frimodt-Moller N, Olsson-Liljequist B, Kahlmeter G. Evaluation of a cefoxitin 30 {micro}g disc on Iso-Sensitest agar for detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2003;52(2):204–7.

    Article  CAS  PubMed  Google Scholar 

  33. Swenson JM, Tenover FC. Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin Microbiol. 2005;43(8):3818–23.

    Google Scholar 

  34. Livermore DM, Andrews JM, Hawkey PM, Ho PL, Keness Y, Doi Y, Paterson D, Woodford N. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly? J Antimicrob Chemother. 2012;67(7):1569–77.

    Article  CAS  PubMed  Google Scholar 

  35. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bush K. New [beta]-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis. 2001;32:1085–9.

    Article  CAS  PubMed  Google Scholar 

  37. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51, table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis. 2004;39(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  40. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med. 2004;140(1):26–32.

    Article  PubMed  Google Scholar 

  41. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement; M100-S24. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.

    Google Scholar 

  42. Rice LB, Carias LL, Shlaes DM. In vivo efficacies of beta-lactam-beta-lactamase inhibitor combinations against a TEM-26-producing strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994;38(11):2663–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005;43(8):4163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yagi T, Wachino J, Kurokawa H, Suzuki S, Yamane K, Doi Y, Shibata N, Kato H, Shibayama K, Arakawa Y. Practical methods using boronic acid compounds for identification of class C beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 2005;43(6):2551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56(12):6437–40.

    Google Scholar 

  46. Roberts MC, Sutcliffe J. Macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone resistance. In: White DG, Alekshun MN, McDermott PF, editors. Frontiers in antimcirobial resistance. A tribute to Stuart B. Levy. Washington, D.C.: ASM Press; 2005. p. 66–84.

    Google Scholar 

  47. Steward CD, Raney PM, Morrell AK, Williams PP, McDougal LK, Jevitt L, McGowan Jr JE, Tenover FC. Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. J Clin Microbiol. 2005;43(4):1716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement. CLSI, document M100-S17. Wayne, Pa: CLSI; 2007.

    Google Scholar 

  49. Moellering Jr RC. Antibiotic synergism--lessons from the enterococcus. Trans Am Clin Climatol Assoc. 1983;94:55–62.

    PubMed  PubMed Central  Google Scholar 

  50. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57(1):138–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Courvalin P. Genetics of glycopeptide resistance in gram-positive pathogens. Int J Med Microbiol. 2005;294(8):479–86.

    Article  CAS  PubMed  Google Scholar 

  52. Depardieu F, Bonora MG, Reynolds PE, Courvalin P. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol. 2003;50(3):931–48.

    Google Scholar 

  53. Xu X, Lin D, Yan G, Ye X, Wu S, Guo Y, Zhu D, Hu F, Zhang Y, Wang F, Jacoby GA, Wang M. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother. 2010;54(11):4643–7.

    Google Scholar 

  54. Perichon B, Casadewall B, Reynolds P, Courvalin P. Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired D-Alanine:D-Alanine ligase. Antimicrob Agents Chemother. 2000;44(5):1346–8.

    Google Scholar 

  55. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003;302(5650):1569–71.

    Google Scholar 

  56. Clark NC, Weigel LM, Patel JB, Tenover FC. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob Agents Chemother. 2005;49(1):470–2.

    Google Scholar 

  57. Cui L, Ma X, Sato K, Okuma K, Tenover FC, Mamizuka EM, Gemmell CG, Kim MN, Ploy MC, El-Solh N, Ferraz V, Hiramatsu K. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2003;41(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother. 1998;42(2):199–209.

    Google Scholar 

  59. Hiramatsu K. Vancomycin resistance in staphylococci. Drug Resist Updat. 1998;1:135–50.

    Article  CAS  PubMed  Google Scholar 

  60. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S, Clark N, Killgore G, O’Hara CM, Jevitt L, Patel JB, Bozdogan B. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother. 2004;48(1):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tenover FC, Lancaster MV, Hill BC, Steward CD, Stocker SA, Hancock GA, O’Hara CM, Clark NC, Hiramatsu K. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol. 1998;36:1020–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tenover FC. The quest to identify heterogeneously resistant vancomycin-intermediate Staphylococcus aureus strains. Int J Antimicrob Agents. 2010;36(4):303–6.

    Article  CAS  PubMed  Google Scholar 

  63. Srinivasan V, Metcalf BJ, Knipe KM, Ouattara M, McGee L, Shewmaker PL, Glennen A, Nichols M, Harris C, Brimmage M, Ostrowsky B, Park CJ, Schrag SJ, Frace MA, Sammons SA, Beall B. vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus. MBio. 2014;5(4):e01386–01314.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7(2):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003;47(2):559–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50(4):1178–82.

    Google Scholar 

  67. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  68. Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis. 2003;37(1):75–81.

    Article  PubMed  Google Scholar 

  69. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, Medalla F, Chiller TM, Hooper DC. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis. 2006;43(3):297–304.

    Google Scholar 

  70. Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis. 2000;30:146–51.

    Article  CAS  PubMed  Google Scholar 

  71. Pillai SK, Sakoulas G, Wennersten C, Eliopoulos GM, Moellering Jr RC, Ferraro MJ, Gold HS. Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis. 2002;186(11):1603–7.

    Article  CAS  PubMed  Google Scholar 

  72. Sinclair A, Arnold C, Woodford N. Rapid detection and estimation by pyrosequencing of 23S rRNA genes with a single nucleotide polymorphism conferring linezolid resistance in Enterococci. Antimicrob Agents Chemother. 2003;47(11):3620–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother. 2008;52(6):2244–6.

    Google Scholar 

  74. Tenover FC, Williams PP, Stocker S, Thompson A, Clark LA, Limbago B, Carey RB, Poppe SM, Shinabarger D, McGowan Jr JE. Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J Clin Microbiol. 2007;45(9):2917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis. 2004;38(12):1673–81.

    Article  CAS  PubMed  Google Scholar 

  76. Fowler Jr VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fatkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.

    Google Scholar 

  77. Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother. 2005;55(3):283–8.

    Article  CAS  PubMed  Google Scholar 

  78. Tally FP, Zeckel M, Wasilewski MM, Carini C, Berman CL, Drusano GL, Oleson Jr FB. Daptomycin: a novel agent for Gram-positive infections. Expert Opin Investig Drugs. 1999;8(8):1223–38.

    Article  CAS  PubMed  Google Scholar 

  79. Jevitt LA, Thorne GM, Traczewski MM, Jones RN, McGowan Jr JE, Tenover FC, Brown SD. Multicenter evaluation of the Etest and disk diffusion methods for differentiating daptomycin-susceptible from non-daptomycin-susceptible Staphylococcus aureus isolates. J Clin Microbiol. 2006;44(9):3098–104.

    Google Scholar 

  80. Diekema DJ, Pfaller MA. Rapid detection of antibiotic-resistant organism carriage for infection prevention. Clin Infect Dis. 2013;56(11):1614–20.

    Article  PubMed  Google Scholar 

  81. Tenover FC. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin Infect Dis. 2007;44(3):418–23.

    Article  CAS  PubMed  Google Scholar 

  82. Stamper PD, Cai M, Howard T, Speser S, Carroll KC. Clinical validation of the molecular BD GeneOhm StaphSR assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J Clin Microbiol. 2007;45(7):2191–6.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lacoma A, Garcia-Sierra N, Prat C, Ruiz-Manzano J, Haba L, Roses S, Maldonado J, Dominguez J. GenoType MTBDRplus assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical samples. J Clin Microbiol. 2008;46(11):3660–7.

    Google Scholar 

  85. Wolk DM, Marx JL, Dominguez L, Driscoll D, Schifman RB. Comparison of MRSASelect Agar, CHROMagar Methicillin-Resistant Staphylococcus aureus (MRSA) Medium, and Xpert MRSA PCR for detection of MRSA in Nares: diagnostic accuracy for surveillance samples with various bacterial densities. J Clin Microbiol. 2009;47(12):3933–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huletsky A, Lebel P, Picard FJ, Bernier M, Gagnon M, Boucher N, Bergeron MG. Identification of methicillin-resistant Staphylococcus aureus carriage in less than 1 hour during a hospital surveillance program. Clin Infect Dis. 2005;40(7):976–81.

    Google Scholar 

  87. Peterson LR, Liesenfeld O, Woods CW, Allen SD, Pombo D, Patel PA, Mehta MS, Nicholson B, Fuller D, Onderdonk A. Multicenter evaluation of the LightCycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test as a rapid method for detection of MRSA in nasal surveillance swabs. J Clin Microbiol. 2010;48(5):1661–6.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Robicsek A, Beaumont JL, Paule SM, Hacek DM, Thomson Jr RB, Kaul KL, King P, Peterson LR. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann Intern Med. 2008;148(6):409–18.

    Article  PubMed  Google Scholar 

  89. Birgand G, Ruimy R, Schwarzinger M, Lolom I, Bendjelloul G, Houhou N, Armand-Lefevre L, Andremont A, Yazdanpanah Y, Lucet JC. Rapid detection of glycopeptide-resistant enterococci: impact on decision-making and costs. Antimicrob Resist Infect Control. 2013;2(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen O, Seifert H, Woodford N, Nordmann P. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012;18(5):413–31.

    Article  CAS  PubMed  Google Scholar 

  91. Ballard SA, Pertile KK, Lim M, Johnson PD, Grayson ML. Molecular characterization of vanB elements in naturally occurring gut anaerobes. Antimicrob Agents Chemother. 2005;49(5):1688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tenover FC, Canton R, Kop J, Chan R, Ryan J, Weir F, Ruiz-Garbajosa P, LaBombardi V, Persing DH. Detection of colonization by carbapenemase-producing Gram-negative bacilli in patients by use of the Xpert MDRO assay. J Clin Microbiol. 2013;51(11):3780–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred C. Tenover Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tenover, F.C. (2017). Antimicrobial Susceptibility Testing Methods for Bacterial Pathogens. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_32

Download citation

Publish with us

Policies and ethics