Skip to main content

Bacterial Genotypic Drug Resistance Assays

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

The increasing emergence of antimicrobial multiresistance has significantly reduced the therapeutic options available for treating common bacterial infections. We are facing a serious worldwide health crisis but, paradoxically, this is also an exciting time since the rapid evolution of genomic technologies has facilitated the development of molecular tools to better diagnose, control the spread, and study the epidemiology of antibiotic-resistant bacterial infections. This review describes the known drug resistance mechanisms, weighs the importance of this new plague, and showcases the new rapid molecular diagnostic tests for detecting antimicrobial resistance, some of which already having a great impact by allowing clinicians to intervene rapidly (<1 h) instead of waiting 2–3 days for the result of culture and susceptibility testing. Some fully automated (sample-to-answer) nucleic acid-based tests for detection of microbial pathogens can now be used at the point of care (POC) but, in the future, POC tests for diagnosing antibiotic-resistant superbug infections should help to improve their treatment and control their dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Antimicrobial resistance. Global report on surveillance. Geneva; 2014.

    Google Scholar 

  2. Rebmann T, Aureden K. Preventing methicillin-resistant Staphylococcus aureus transmission in hospitals: an Executive Summary of the Association for Professionals in Infection Control and Epidemiology, Inc, Elimination Guide. Am J Infect Control. 2011;39:595–8.

    Article  PubMed  Google Scholar 

  3. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12.

    Article  PubMed  Google Scholar 

  5. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  CAS  PubMed  Google Scholar 

  6. Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–81.

    Article  PubMed  Google Scholar 

  7. Lee S, Kim SH, Park M, Bae S. High prevalence of multiresistance in levofloxacin-nonsusceptible Streptococcus pneumoniae isolates in Korea. Diagn Microbiol Infect Dis. 2013;76:227–31.

    Article  CAS  PubMed  Google Scholar 

  8. Low DE. Quinolone resistance among pneumococci: therapeutic and diagnostic implications. Clin Infect Dis. 2004;38 Suppl 4:S357–62.

    Article  CAS  PubMed  Google Scholar 

  9. Pletz MW, McGee L, Jorgensen J, et al. Levofloxacin-resistant invasive Streptococcus pneumoniae in the United States: evidence for clonal spread and the impact of conjugate pneumococcal vaccine. Antimicrob Agents Chemother. 2004;48:3491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calfee DP. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and other Gram-positives in healthcare. Curr Opin Infect Dis. 2012;25:385–94.

    Article  CAS  PubMed  Google Scholar 

  11. Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303:324–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoffner S. Unexpected high levels of multidrug-resistant tuberculosis present new challenges for tuberculosis control. Lancet. 2012;380:1367–9.

    Article  PubMed  Google Scholar 

  13. Günther G. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges. Clin Med. 2014;14:279–85.

    Article  Google Scholar 

  14. World Health Organization. Global tuberculosis report Geneva; 2013.

    Google Scholar 

  15. McGowan Jr JE, Tenover FC. Confronting bacterial resistance in healthcare settings: a crucial role for microbiologists. Nat Rev Microbiol. 2004;2:251–8.

    Article  CAS  PubMed  Google Scholar 

  16. Frickmann H, Masanta WO, Zautner AE. Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. Biomed Res Int. 2014;2014:375681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jenkins SG, Schuetz AN. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin Proc. 2012;87:290–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bergeron MG, Ouellette M. Preventing antibiotic resistance using rapid DNA-based diagnostic tests. Infect Control Hosp Epidemiol. 1998;19:560–4.

    Article  CAS  PubMed  Google Scholar 

  19. Huletsky A, Lebel P, Picard FJ, et al. Identification of methicillin-resistant Staphylococcus aureus carriage in less than 1 hour during a hospital surveillance program. Clin Infect Dis. 2005;40:976–81.

    Article  PubMed  Google Scholar 

  20. Dubouix-Bourandy A, de Ladoucette A, Pietri V, et al. Direct detection of Staphylococcus osteoarticular infections by use of Xpert MRSA/SA SSTI real-time PCR. J Clin Microbiol. 2011;49:4225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergeron MG, Ke D, Menard C, et al. Rapid detection of group B streptococci in pregnant women at delivery. N Engl J Med. 2000;343:175–9.

    Article  CAS  PubMed  Google Scholar 

  22. Huletsky A, Giroux R, Rossbach V, et al. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42:1875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergeron MG. Revolutionizing the practice of medicine through rapid (<1h) DNA-based diagnostics. Clin Invest Med. 2008;31:E265–71.

    Article  CAS  PubMed  Google Scholar 

  24. Houghton JL, Green KD, Chen W, Garneau-Tsodikova S. The future of aminoglycosides: the end or renaissance? ChemBioChem. 2010;11:880–902.

    Article  CAS  PubMed  Google Scholar 

  25. Laurenzo D, Mousa SA. Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta Trop. 2011;119:5–10.

    Article  CAS  PubMed  Google Scholar 

  26. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13:151–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of beta-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 2014;78:3–13.

    Article  CAS  PubMed  Google Scholar 

  28. Amyes SG. Resistance to beta-lactams - the permutations. J Chemother. 2003;15:525–35.

    Google Scholar 

  29. Bush K. The ABCD’s of beta-lactamase nomenclature. J Infect Chemother. 2013;19:549–59.

    Article  CAS  PubMed  Google Scholar 

  30. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54:969–76.

    Article  CAS  PubMed  Google Scholar 

  31. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cattoir V, Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother. 2013;68:731–42.

    Article  CAS  PubMed  Google Scholar 

  33. Howden BP, Peleg AY, Stinear TP. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect Genet Evol. 2014;21:575–82.

    Article  CAS  PubMed  Google Scholar 

  34. Perichon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:4580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sujatha S, Praharaj I. Glycopeptide resistance in gram-positive cocci: a review. Interdiscip Perspect Infect Dis. 2012;2012:781679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moura TM, Cassenego AP, Campos FS, et al. Detection of vanC1 gene transcription in vancomycin-susceptible Enterococcus faecalis. Mem Inst Oswaldo Cruz. 2013;108:453–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schwaiger K, Bauer J, Hormansdorfer S, et al. Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis. Microb Drug Resist. 2012;18:434–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sun M, Wang Y, Chen Z, Zhu X, Tian L, Sun Z. The first report of the vanC(1) gene in Enterococcus faecium isolated from a human clinical specimen. Mem Inst Oswaldo Cruz. 2014;109:712–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang S, Sievert DM, Hageman JC, et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348:1342–7.

    Article  PubMed  Google Scholar 

  40. Ligozzi M, Lo Cascio G, Fontana R. vanA gene cluster in a vancomycin-resistant clinical isolate of Bacillus circulans. Antimicrob Agents Chemother. 1998;42:2055–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mevius D, Devriese L, Butaye P, Vandamme P, Verschure M, Veldman K. Isolation of glycopeptide resistant Streptococcus gallolyticus strains with vanA, vanB, and both vanA and vanB genotypes from faecal samples of veal calves in The Netherlands. J Antimicrob Chemother. 1998;42:275–6.

    Article  CAS  PubMed  Google Scholar 

  42. Power EG, Abdulla YH, Talsania HG, Spice W, Aathithan S, French GL. vanA genes in vancomycin-resistant clinical isolates of Oerskovia turbata and Arcanobacterium (Corynebacterium) haemolyticum. J Antimicrob Chemother. 1995;36:595–606.

    Article  CAS  PubMed  Google Scholar 

  43. Poyart C, Pierre C, Quesne G, Pron B, Berche P, Trieu-Cuot P. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrob Agents Chemother. 1997;41:24–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stinear TP, Olden DC, Johnson PD, Davies JK, Grayson ML. Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. Lancet. 2001;357:855–6.

    Article  CAS  PubMed  Google Scholar 

  45. Domingo MC, Huletsky A, Bernal A, et al. Characterization of a Tn5382-like transposon containing the vanB2 gene cluster in a Clostridium strain isolated from human faeces. J Antimicrob Chemother. 2005;55:466–74.

    Article  CAS  PubMed  Google Scholar 

  46. Dahl KH, Sundsfjord A. Transferable vanB2 Tn5382-containing elements in fecal streptococcal strains from veal calves. Antimicrob Agents Chemother. 2003;47:2579–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fontana R, Ligozzi M, Pedrotti C, Padovani EM, Cornaglia G. Vancomycin-resistant Bacillus circulans carrying the vanA gene responsible for vancomycin resistance in enterococci. Eur J Clin Microbiol Infect Dis. 1997;16:473–4.

    Article  CAS  PubMed  Google Scholar 

  48. Patel R. Enterococcal-type glycopeptide resistance genes in non-enterococcal organisms. FEMS Microbiol Lett. 2000;185:1–7.

    Article  CAS  PubMed  Google Scholar 

  49. Launay A, Ballard SA, Johnson PD, Grayson ML, Lambert T. Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother. 2006;50:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ballard SA, Pertile KK, Lim M, Johnson PD, Grayson ML. Molecular characterization of vanB elements in naturally occurring gut anaerobes. Antimicrob Agents Chemother. 2005;49:1688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ballard SA, Grabsch EA, Johnson PD, Grayson ML. Comparison of three PCR primer sets for identification of vanB gene carriage in feces and correlation with carriage of vancomycin-resistant enterococci: interference by vanB-containing anaerobic bacilli. Antimicrob Agents Chemother. 2005;49:77–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Domingo MC, Huletsky A, Giroux R, et al. High prevalence of glycopeptide resistance genes vanB, vanD, and vanG not associated with enterococci in human fecal flora. Antimicrob Agents Chemother. 2005;49:4784–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Domingo MC, Huletsky A, Boissinot M, et al. Clostridium lavalense sp. nov., a glycopeptide-resistant species isolated from human faeces. Int J Syst Evol Microbiol. 2009;59:498–503.

    Article  CAS  PubMed  Google Scholar 

  54. Park C, Nichols M, Schrag SJ. Two cases of invasive vancomycin-resistant group B streptococcus infection. N Engl J Med. 2014;370:885–6.

    Article  CAS  PubMed  Google Scholar 

  55. Domingo MC, Huletsky A, Boissinot M, Bernard KA, Picard FJ, Bergeron MG. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int J Syst Evol Microbiol. 2008;58:1393–7.

    Article  CAS  PubMed  Google Scholar 

  56. Moravvej Z, Estaji F, Askari E, Solhjou K, Naderi Nasab M, Saadat S. Update on the global number of vancomycin-resistant Staphylococcus aureus (VRSA) strains. Int J Antimicrob Agents. 2013;42:370–1.

    Article  CAS  PubMed  Google Scholar 

  57. Saadat S, Solhjoo K, Norooz-Nejad MJ, Kazemi A. vanA and vanB positive vancomycin-resistant Staphylococcus aureus among clinical isolates in Shiraz. South of Iran. Oman Med J. 2014;29:335–9.

    Article  PubMed  Google Scholar 

  58. Chakraborty SP, KarMahapatra S, Bal M, Roy S. Isolation and identification of vancomycin resistant Staphylococcus aureus from post operative pus sample. Al Ameen J Med Sci. 2011;4:152–68.

    CAS  Google Scholar 

  59. Abdelgadeir LM, Elhassan MM. Van B Positive Vancomycin-resistant Staphylococcus aureus among clinical isolates in Shendi City, Northern Sudan. IOSR J Dental Med Sci. 2015;14:87–91.

    Google Scholar 

  60. Starosta AL, Karpenko VV, Shishkina AV, et al. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Chem Biol. 2010;17:504–14.

    Article  CAS  PubMed  Google Scholar 

  61. Auerbach T, Mermershtain I, Davidovich C, et al. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc Natl Acad Sci USA. 2010;107:1983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother. 1999;43:2823–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Roberts MC. Environmental macrolide–lincosamide–streptogramin and tetracycline resistant bacteria. Front Microbiol. 2011;2:40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat. 1999;2:38–55.

    Article  CAS  PubMed  Google Scholar 

  65. Guan X, Xue X, Liu Y, et al. Plasmid-mediated quinolone resistance—current knowledge and future perspectives. J Int Med Res. 2013;41:20–30.

    Article  CAS  PubMed  Google Scholar 

  66. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22:664–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huovinen P, Sundstrom L, Swedberg G, Skold O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. 1995;39:279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zakeri B, Wright GD. Chemical biology of tetracycline antibiotics. Biochem Cell Biol. 2008;86:124–36.

    Article  CAS  PubMed  Google Scholar 

  69. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murray IA, Shaw WV. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother. 1997;41:1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28:519–42.

    Article  CAS  PubMed  Google Scholar 

  72. Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci U S A. 2008;105:13339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Ann N Y Acad Sci. 2011;1241:48–70.

    Article  CAS  PubMed  Google Scholar 

  74. Inderlied CB, Pfyffer GE. Susceptibility test methods: mycobacteria. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington DC: ASM Press; 2003. p. 1149–77.

    Google Scholar 

  75. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 1998;79:3–29.

    Article  CAS  PubMed  Google Scholar 

  76. Vilcheze C, Jacobs Jr WR. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol. 2007;61:35–50.

    Article  CAS  PubMed  Google Scholar 

  77. Woods GL, Lin SG, Desmond EP. Susceptibility test methods: Mycobacteria, Nocardia, and other Actinomycetes. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1215–38.

    Chapter  Google Scholar 

  78. Coelho MB, Costa ER, Vasconcellos SE, et al. Sequence and structural characterization of tbnat gene in isoniazid-resistant Mycobacterium tuberculosis: identification of new mutations. Mutat Res. 2011;712:33–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lee AS, Teo AS, Wong SY. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2001;45:2157–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takayama K, Kilburn JO. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1989;33:1493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Telenti A, Philipp WJ, Sreevatsan S, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med. 1997;3:567–70.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis. 2003;7:6–21.

    CAS  PubMed  Google Scholar 

  83. Shima SM, Donahoe LW. Bacterial resistance: how to detect three types. Med Lab Obs. 2004;36:12–6.

    Google Scholar 

  84. Swenson JM, Patel JB, Jorgensen JH. Special phenotypic methods for detecting antibacterial resistance. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1155–79.

    Chapter  Google Scholar 

  85. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: special needs for fastidious organisms and difficult-to-detect resistance mechanisms. Clin Infect Dis. 2000;30:799–808.

    Article  CAS  PubMed  Google Scholar 

  86. Pulido MR, Garcia-Quintanilla M, Martin-Pena R, Cisneros JM, McConnell MJ. Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother. 2013;68:2710–17.

    Article  CAS  PubMed  Google Scholar 

  87. van Belkum A, Dunne Jr WM. Next-generation antimicrobial susceptibility testing. J Clin Microbiol. 2013;51:2018–24.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rasheed JK, Tenover FC. Detection and characterization of antimicrobial resistance genes in pathogenic bacteria. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1239–61.

    Chapter  Google Scholar 

  89. Tenover FC, Rasheed JK. Detection of antimicrobial resistance genes and mutations associated with antimicrobial resistance in bacteria. In: Persing DH, Tenover FC, Versalovic J, et al., editors. Molecular microbiology diagnostic principles and practices. 2nd ed. Washington DC: ASM Press; 2011. p. 463–77.

    Google Scholar 

  90. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749–55.

    Article  CAS  PubMed  Google Scholar 

  91. Winstanley T, Courvalin P. Expert systems in clinical microbiology. Clin Microbiol Rev. 2011;24:515–56.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Richter SS, Ferraro MJ. Susceptibility testing instrumentation and computerized expert systems for data analysis and interpretation. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1144–54.

    Chapter  Google Scholar 

  93. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-fourth Informational Supplement. CLSI document M100-S26. Wayne, PA, USA; 2016.

    Google Scholar 

  94. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests, Approved Standard—Eleventh Edition; CLSI document M02-A12. Wayne, PA, USA; 2016.

    Google Scholar 

  95. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard—Ninth Edition. CLSI document M07-A10. Wayne, PA, USA; 2016.

    Google Scholar 

  96. Clinical and Laboratory Standards Institute. Methods for antimicrobial susceptibility testing of anaerobic bacteria; Approved Standard -Eighth Edition, CLSI document M11-A8. Wayne, PA, USA; 2012.

    Google Scholar 

  97. Leclercq R, Canton R, Brown DF, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 2013;19:141–60.

    Article  CAS  PubMed  Google Scholar 

  98. Silley P. Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Rev Sci Tech. 2012;31:33–41.

    Article  CAS  PubMed  Google Scholar 

  99. Patel JB, Tenover FC, Turnridge JD, Jorgensen JH. Susceptibility test methods: dilution and disk diffusion methods. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1122–43.

    Chapter  Google Scholar 

  100. Turnridge JD, Ferraro MJ, Jorgensen JH. Susceptibility test methods: general considerations. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1115–21.

    Chapter  Google Scholar 

  101. Jorgensen JH. Who defines resistance? The clinical and economic impact of antimicrobial susceptibility testing breakpoints. Semin Pediatr Infect Dis. 2004;15:105–8.

    Article  PubMed  Google Scholar 

  102. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: general principles and contemporary practices. Clin Infect Dis. 1998;26:973–80.

    Article  CAS  PubMed  Google Scholar 

  103. Kahlmeter G. Defining antibiotic resistance-towards international harmonization. Ups J Med Sci. 2014;119:78–86.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hindler JA, Jorgensen JH. Susceptibility test methods: fastidious bacteria. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1180–203.

    Chapter  Google Scholar 

  105. Citron DM, Hecht DW. Susceptibility test methods: fastidious bacteria. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 1204–14.

    Chapter  Google Scholar 

  106. Garcia-Alvarez L, Holden MT, Lindsay H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11:595–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ito T, Hiramatsu K, Tomasz A, et al. Guidelines for reporting novel mecA gene homologues. Antimicrob Agents Chemother. 2012;56:4997–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014;22:42–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10:781–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougall L, Bille J. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob Agents Chemother. 1989;33:1869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baron EJ, Tenover FC. Methicillin-resistant Staphylococcus aureus diagnostics: state of the art. Expert Opin Med Diagn. 2012;6:585–92.

    Article  PubMed  Google Scholar 

  112. Alm RA, McLaughlin RE, Kos VN, Sader HS, Iaconis JP, Lahiri SD. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: an epidemiological and structural perspective. J Antimicrob Chemother. 2014;69:2065–75.

    Article  CAS  PubMed  Google Scholar 

  113. Jones RN, Mendes RE, Sader HS. Ceftaroline activity against pathogens associated with complicated skin and skin structure infections: results from an international surveillance study. J Antimicrob Chemother. 2010;65 Suppl 4:iv17–31.

    CAS  PubMed  Google Scholar 

  114. Long SW, Olsen RJ, Mehta SC, et al. PBP2a mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2014;58:6668–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Nastaly P, Grinholc M, Bielawski KP. Molecular characteristics of community-associated methicillin-resistant Staphylococcus aureus strains for clinical medicine. Arch Microbiol. 2010;192:603–17.

    Article  CAS  PubMed  Google Scholar 

  116. Skov R, Larsen AR, Kearns A, et al. Phenotypic detection of mecC-MRSA: cefoxitin is more reliable than oxacillin. J Antimicrob Chemother. 2014;69:133–5.

    Article  CAS  PubMed  Google Scholar 

  117. Cunningham R, Jenks P, Northwood J, Wallis M, Ferguson S, Hunt S. Effect on MRSA transmission of rapid PCR testing of patients admitted to critical care. J Hosp Infect. 2007;65:24–8.

    Article  CAS  PubMed  Google Scholar 

  118. Harbarth S, Hawkey PM, Tenover F, Stefani S, Pantosti A, Struelens MJ. Update on screening and clinical diagnosis of meticillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 2011;37:110–17.

    Article  CAS  PubMed  Google Scholar 

  119. Jog S, Cunningham R, Cooper S, et al. Impact of preoperative screening for meticillin-resistant Staphylococcus aureus by real-time polymerase chain reaction in patients undergoing cardiac surgery. J Hosp Infect. 2008;69:124–30.

    Article  CAS  PubMed  Google Scholar 

  120. Leung EC, Lee MK, Lai RW. Admission screening of methicillin-resistant Staphylococcus aureus with rapid molecular detection in intensive care unit: a three-year single-centre experience in Hong Kong. ISRN Microbiol. 2013;2013:140294.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Palavecino EL. Rapid methods for detection of MRSA in clinical specimens. Methods Mol Biol. 2014;1085:71–83.

    Article  CAS  PubMed  Google Scholar 

  122. Polisena J, Chen S, Cimon K, McGill S, Forward K, Gardam M. Clinical effectiveness of rapid tests for methicillin resistant Staphylococcus aureus (MRSA) in hospitalized patients: a systematic review. BMC Infect Dis. 2011;11:336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kang J, Smith KJ, Bryce CL, Muto CA. Economic analysis of universal active surveillance screening for methicillin-resistant Staphylococcus aureus: perspective matters. Infect Control Hosp Epidemiol. 2015;36:14–6.

    Article  PubMed  Google Scholar 

  124. Kavanagh KT, Calderon LE, Saman DM. Viewpoint: a response to “Screening and isolation to control methicillin-resistant Staphylococcus aureus: sense, nonsense, and evidence”. Antimicrob Resist Infect Control. 2015;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Leeuwen W, Belkum A. Molecular detection and identification of methicillin-resistant Staphylococcus aureus. In: Persing DH, Tenover FC, Versalovic J, et al., editors. Molecular microbiology diagnostic principles and practices. 2nd ed. Washington DC: ASM Press; 2011. p. 463–77.

    Google Scholar 

  126. te Witt R, van Belkum A, van Leeuwen WB. Molecular diagnostics and genotyping of MRSA: an update. Expert Rev Mol Diagn. 2010;10:375–80.

    Article  Google Scholar 

  127. Humphreys H. Controlling the spread of vancomycin-resistant enterococci. Is active screening worthwhile? J Hosp Infect. 2014;88:191–8.

    Article  CAS  PubMed  Google Scholar 

  128. Perencevich EN, Fisman DN, Lipsitch M, Harris AD, Morris Jr JG, Smith DL. Projected benefits of active surveillance for vancomycin-resistant enterococci in intensive care units. Clin Infect Dis. 2004;38:1108–15.

    Article  PubMed  Google Scholar 

  129. Anderson NW, Buchan BW, Young CL, et al. Multicenter clinical evaluation of VRESelect agar for identification of vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Clin Microbiol. 2013;51:2758–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hegstad K, Giske CG, Haldorsen B, et al. Performance of the EUCAST disk diffusion method, the CLSI agar screen method, and the Vitek 2 automated antimicrobial susceptibility testing system for detection of clinical isolates of Enterococci with low- and medium-level VanB-type vancomycin resistance: a multicenter study. J Clin Microbiol. 2014;52:1582–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Klare I, Fleige C, Geringer U, Witte W, Werner G. Performance of three chromogenic VRE screening agars, two Etest(®) vancomycin protocols, and different microdilution methods in detecting vanB genotype Enterococcus faecium with varying vancomycin MICs. Diagn Microbiol Infect Dis. 2012;74:171–6.

    Article  CAS  PubMed  Google Scholar 

  132. Ongut G, Kilinckaya H, Baysan BO, et al. Evaluation of Brilliance VRE agar for the detection of vancomycin-resistant enterococci in rectal swab specimens. J Med Microbiol. 2013;62:661–2.

    Article  PubMed  Google Scholar 

  133. Wijesuriya TM, Perry P, Pryce T, et al. Low vancomycin MICs and fecal densities reduce the sensitivity of screening methods for vancomycin resistance in Enterococci. J Clin Microbiol. 2014;52:2829–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Banerjee T, Anupurba S. Colonization with vancomycin-intermediate Staphylococcus aureus strains containing the vanA resistance gene in a tertiary-care center in north India. J Clin Microbiol. 2012;50:1730–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nordmann P, Gniadkowski M, Giske CG, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18:432–8.

    Article  CAS  PubMed  Google Scholar 

  137. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303:298–304.

    Article  CAS  PubMed  Google Scholar 

  138. Canton R, Akova M, Carmeli Y, et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012;18:413–31.

    Article  CAS  PubMed  Google Scholar 

  139. Carmeli Y, Akova M, Cornaglia G, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect. 2010;16:102–11.

    Article  CAS  PubMed  Google Scholar 

  140. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014;20:1170–5.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nordmann P, Cornaglia G. Carbapenemase-producing Enterobacteriaceae: a call for action! Clin Microbiol Infect. 2012;18:411–12.

    Article  CAS  PubMed  Google Scholar 

  142. Nordmann P, Poirel L. Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2013;68:487–9.

    Article  CAS  PubMed  Google Scholar 

  143. Miriagou V, Cornaglia G, Edelstein M, et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect. 2010;16:112–22.

    Article  CAS  PubMed  Google Scholar 

  144. Hammoudi D, Moubareck CA, Sarkis DK. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J Microbiol Methods. 2014;107:106–18.

    Article  CAS  PubMed  Google Scholar 

  145. Hrabak J, Chudackova E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20:839–53.

    Article  CAS  PubMed  Google Scholar 

  146. Bartolini A, Frasson I, Cavallaro A, Richter SN, Palu G. Comparison of phenotypic methods for the detection of carbapenem non-susceptible Enterobacteriaceae. Gut Pathog. 2014;6:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol. 2012;50:3877–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dortet L, Brechard L, Poirel L, Nordmann P. Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol. 2014;63:772–6.

    Article  PubMed  Google Scholar 

  149. Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol. 2014;52:2359–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18:1503–7.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Maurer FP, Castelberg C, Quiblier C, Bloemberg GV, Hombach M. Evaluation of carbapenemase screening and confirmation tests with Enterobacteriaceae and development of a practical diagnostic algorithm. J Clin Microbiol. 2015;53:95–104.

    Article  CAS  PubMed  Google Scholar 

  152. Osterblad M, Hakanen AJ, Jalava J. Evaluation of the Carba NP test for carbapenemase detection. Antimicrob Agents Chemother. 2014;58:7553–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Peter S, Lacher A, Marschal M, et al. Evaluation of phenotypic detection methods for metallo-beta-lactamases (MBLs) in clinical isolates of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2014;33:1133–41.

    Article  CAS  PubMed  Google Scholar 

  154. Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57:4578–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vasoo S, Cunningham SA, Kohner PC, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing Gram-negative bacilli. J Clin Microbiol. 2013;51:3097–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yusuf E, Van Der Meeren S, Schallier A, Pierard D. Comparison of the Carba NP test with the Rapid CARB Screen Kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2014;33:2237–40.

    Article  CAS  PubMed  Google Scholar 

  157. Hoyos-Mallecot Y, Riazzo C, Miranda-Casas C, Rojo-Martin MD, Gutierrez-Fernandez J, Navarro-Mari JM. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods. 2014;105:98–101.

    Article  CAS  PubMed  Google Scholar 

  158. Centers for Disease Control and Prevention. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. Morb Mortal Wkly Rep. 2009;58:256–60.

    Google Scholar 

  159. Blackburn J, Tsimiklis C, Lavergne V, et al. Carbapenem disks on MacConkey agar in screening methods for detection of carbapenem-resistant Gram-negative rods in stools. J Clin Microbiol. 2013;51:331–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lolans K, Calvert K, Won S, Clark J, Hayden MK. Direct ertapenem disk screening method for identification of KPC-producing Klebsiella pneumoniae and Escherichia coli in surveillance swab specimens. J Clin Microbiol. 2010;48:836–41.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Voulgari E, Poulou A, Koumaki V, Tsakris A. Carbapenemase-producing Enterobacteriaceae: now that the storm is finally here, how will timely detection help us fight back? Future Microbiol. 2013;8:27–39.

    Article  CAS  PubMed  Google Scholar 

  162. Rasheed JK, Tenover FC. Detection and characterization of antimicrobial resistance genes in bacteria. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington DC: ASM Press; 2003. p. 1196–212.

    Google Scholar 

  163. Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2013;41:D36–42.

    Article  CAS  PubMed  Google Scholar 

  164. Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev. 2001;14:836–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cockerill 3rd FR. Genetic methods for assessing antimicrobial resistance. Antimicrob Agents Chemother. 1999;43:199–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lupo A, Papp-Wallace KM, Sendi P, Bonomo RA, Endimiani A. Non-phenotypic tests to detect and characterize antibiotic resistance mechanisms in Enterobacteriaceae. Diagn Microbiol Infect Dis. 2013;77:179–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Clinical and Laboratory Standards Institute. Quality system regulation for laboratory-developed tests: A practical guide for the laboratory. CLSI document QSRLDT. Wayne, PA, USA; 2015.

    Google Scholar 

  168. U.S. Department of Health and Human Services: Centers for Medicare and Medicaid Services. Clinical laboratory improvements amendments of 1988 (CLIA). 1992.

    Google Scholar 

  169. Salimnia H, Fairfax MR, Lephart P, et al. An international, prospective, multicenter evaluation of the combination of AdvanDx Staphylococcus QuickFISH BC with mecA XpressFISH for detection of methicillin-resistant Staphylococcus aureus isolates from positive blood cultures. J Clin Microbiol. 2014;52:3928–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yan L, Zhou J, Zheng Y, et al. Isothermal amplified detection of DNA and RNA. Mol BioSyst. 2014;10:970–1003.

    Article  CAS  PubMed  Google Scholar 

  171. Nolte FS, Caliendo AM. Molecular microbiology. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington DC: ASM Press; 2011. p. 27–59.

    Chapter  Google Scholar 

  172. Gupta A, Anupurba S. Detection of drug resistance in Mycobacterium tuberculosis: methods, principles and applications. Indian J Tuberc. 2015;62:13–22.

    Article  PubMed  Google Scholar 

  173. Cockerill 3rd FR. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Arch Pathol Lab Med. 2003;127:1112–20.

    CAS  PubMed  Google Scholar 

  174. Wilhelm J, Pingoud A. Real-time polymerase chain reaction. ChemBioChem. 2003;4:1120–8.

    Article  CAS  PubMed  Google Scholar 

  175. Bissonnette L, Bergeron MG. Multiparametric technologies for the diagnosis of syndromic infections. Clin Microbiol Newsl. 2012;34:159–68.

    Article  Google Scholar 

  176. Greatorex J, Ellington MJ, Koser CU, Rolfe KJ, Curran MD. New methods for identifying infectious diseases. Br Med Bull. 2014;112:27–35.

    Article  PubMed  Google Scholar 

  177. Donatin E, Drancourt M. DNA microarrays for the diagnosis of infectious diseases. Med Mal Infect. 2012;42:453–9.

    Article  CAS  PubMed  Google Scholar 

  178. Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009;22:611–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Card R, Zhang J, Das P, Cook C, Woodford N, Anjum MF. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. Antimicrob Agents Chemother. 2013;57:458–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Volokhov D, Chizhikov V, Chumakov K, Rasooly A. Microarray analysis of erythromycin resistance determinants. J Appl Microbiol. 2003;95:787–98.

    Article  CAS  PubMed  Google Scholar 

  181. Booth SA, Drebot MA, Martin IE, Ng LK. Design of oligonucleotide arrays to detect point mutations: molecular typing of antibiotic resistant strains of Neisseria gonorrhoeae and hantavirus infected deer mice. Mol Cell Probes. 2003;17:77–84.

    Article  CAS  PubMed  Google Scholar 

  182. Frye JG, Jesse T, Long F, et al. DNA microarray detection of antimicrobial resistance genes in diverse bacteria. Int J Antimicrob Agents. 2006;27:138–51.

    Article  CAS  PubMed  Google Scholar 

  183. Gryadunov D, Mikhailovich V, Lapa S, et al. Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin Microbiol Infect. 2005;11:531–9.

    Article  CAS  PubMed  Google Scholar 

  184. Nagaoka T, Horii T, Satoh T, et al. Use of a three-dimensional microarray system for detection of levofloxacin resistance and the mecA gene in Staphylococcus aureus. J Clin Microbiol. 2005;43:5187–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vernet G, Jay C, Rodrigue M, Troesch A. Species differentiation and antibiotic susceptibility testing with DNA microarrays. J Appl Microbiol. 2004;96:59–68.

    Article  CAS  PubMed  Google Scholar 

  186. Yu X, Susa M, Knabbe C, Schmid RD, Bachmann TT. Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J Clin Microbiol. 2004;42:4083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol. 2005;43:2291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Grimm V, Ezaki S, Susa M, Knabbe C, Schmid RD, Bachmann TT. Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol. 2004;42:3766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. van Hoek AH, Scholtens IM, Cloeckaert A, Aarts HJ. Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. J Microbiol Methods. 2005;62:13–23.

    Article  PubMed  CAS  Google Scholar 

  190. Couzinet S, Yugueros J, Barras C, et al. Evaluation of a high-density oligonucleotide array for characterization of grlA, grlB, gyrA and gyrB mutations in fluoroquinolone resistant Staphylococcus aureus isolates. J Microbiol Methods. 2005;60:275–9.

    Article  CAS  PubMed  Google Scholar 

  191. Mikhailovich V, Lapa S, Gryadunov D, et al. Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J Clin Microbiol. 2001;39:2531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yue J, Shi W, Xie J, et al. Detection of rifampin-resistant Mycobacterium tuberculosis strains by using a specialized oligonucleotide microarray. Diagn Microbiol Infect Dis. 2004;48:47–54.

    Article  CAS  PubMed  Google Scholar 

  193. Deng JY, Zhang XE, Lu HB, et al. Multiplex detection of mutations in clinical isolates of rifampin-resistant Mycobacterium tuberculosis by short oligonucleotide ligation assay on DNA chips. J Clin Microbiol. 2004;42:4850–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bi LJ, Zhou YF, Zhang XE, Deng JY, Wen JK, Zhang ZP. Construction and characterization of different MutS fusion proteins as recognition elements of DNA chip for detection of DNA mutations. Biosens Bioelectron. 2005;21:135–44.

    Article  PubMed  CAS  Google Scholar 

  195. Sougakoff W, Rodrigue M, Truffot-Pernot C, et al. Use of a high-density DNA probe array for detecting mutations involved in rifampicin resistance in Mycobacterium tuberculosis. Clin Microbiol Infect. 2004;10:289–94.

    Article  CAS  PubMed  Google Scholar 

  196. Tang X, Morris SL, Langone JJ, Bockstahler LE. Microarray and allele specific PCR detection of point mutations in Mycobacterium tuberculosis genes associated with drug resistance. J Microbiol Methods. 2005;63:318–30.

    Article  CAS  PubMed  Google Scholar 

  197. Aragon LM, Navarro F, Heiser V, Garrigo M, Espanol M, Coll P. Rapid detection of specific gene mutations associated with isoniazid or rifampicin resistance in Mycobacterium tuberculosis clinical isolates using non-fluorescent low-density DNA microarrays. J Antimicrob Chemother. 2006;57:825–31.

    Article  CAS  PubMed  Google Scholar 

  198. Head SR, Parikh K, Rogers YH, Bishai W, Goelet P, Boyce-Jacino MT. Solid-phase sequence scanning for drug resistance detection in tuberculosis. Mol Cell Probes. 1999;13:81–7.

    Article  CAS  PubMed  Google Scholar 

  199. Denkin S, Volokhov D, Chizhikov V, Zhang Y. Microarray-based pncA genotyping of pyrazinamide-resistant strains of Mycobacterium tuberculosis. J Med Microbiol. 2005;54:1127–31.

    Article  CAS  PubMed  Google Scholar 

  200. Davies TA, Goldschmidt R. Screening of large numbers of Streptococcus pneumoniae isolates for mutations associated with fluoroquinolone resistance using an oligonucleotide probe assay. FEMS Microbiol Lett. 2002;217:219–24.

    Article  CAS  PubMed  Google Scholar 

  201. Batchelor M, Hopkins KL, Liebana E, et al. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria. Int J Antimicrob Agents. 2008;31:440–51.

    Article  CAS  PubMed  Google Scholar 

  202. Leinberger DM, Grimm V, Rubtsova M, et al. Integrated detection of extended-spectrum-beta-lactam resistance by DNA microarray-based genotyping of TEM, SHV, and CTX-M genes. J Clin Microbiol. 2010;48:460–71.

    Article  CAS  PubMed  Google Scholar 

  203. Leski TA, Vora GJ, Barrows BR, et al. Molecular characterization of multidrug resistant hospital isolates using the antimicrobial resistance determinant microarray. PLoS One. 2013;8, e69507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rubtsova MY, Ulyashova MM, Edelstein MV, Egorov AM. Oligonucleotide microarrays with horseradish peroxidase-based detection for the identification of extended-spectrum beta-lactamases. Biosens Bioelectron. 2010;26:1252–60.

    Article  CAS  PubMed  Google Scholar 

  205. Strauss C, Endimiani A, Perreten V. A novel universal DNA labeling and amplification system for rapid microarray-based detection of 117 antibiotic resistance genes in Gram-positive bacteria. J Microbiol Methods. 2015;108:25–30.

    Article  CAS  PubMed  Google Scholar 

  206. Raich T, Powell S. Identification of bacterial and fungal pathogens from positive blood culture bottles: a microarray-based approach. Methods Mol Biol. 2015;1237:73–90.

    Article  CAS  PubMed  Google Scholar 

  207. Dheda K, Gumbo T, Gandhi NR, et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respir Med. 2014;2:321–38.

    Article  PubMed  Google Scholar 

  208. Simons SO, van Soolingen D. Drug susceptibility testing for optimizing tuberculosis treatment. Curr Pharm Des. 2011;17:2863–74.

    Article  CAS  PubMed  Google Scholar 

  209. Lin SY, Desmond EP. Molecular diagnosis of tuberculosis and drug resistance. Clin Lab Med. 2014;34:297–314.

    Article  PubMed  Google Scholar 

  210. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2009;13:1320–30.

    CAS  PubMed  Google Scholar 

  211. Flandrois JP, Lina G, Dumitrescu O. MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinformatics. 2014;15:107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Salamon H, Yamaguchi KD, Cirillo DM, et al. Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis. J Infect Dis. 2015;211 Suppl 2:S50–7.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. Tuberculosis drug resistance mutation database. PLoS Med. 2009;6, e2.

    Article  PubMed  CAS  Google Scholar 

  214. Drobniewski F, Nikolayevskyy V, Maxeiner H, et al. Rapid diagnostics of tuberculosis and drug resistance in the industrialized world: clinical and public health benefits and barriers to implementation. BMC Med. 2013;11:190.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wilson ML. Rapid diagnosis of Mycobacterium tuberculosis infection and drug susceptibility testing. Arch Pathol Lab Med. 2013;137:812–19.

    Article  PubMed  Google Scholar 

  216. Wlodarska M, Johnston JC, Gardy JL, Tang P. A microbiological revolution meets an ancient disease: improving the management of tuberculosis with genomics. Clin Microbiol Rev. 2015;28:523–39.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Arentz M, Sorensen B, Horne DJ, Walson JL. Systematic review of the performance of rapid rifampicin resistance testing for drug-resistant tuberculosis. PLoS One. 2013;8, e76533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Heysell SK, Houpt ER. The future of molecular diagnostics for drug-resistant tuberculosis. Expert Rev Mol Diagn. 2012;12:395–405.

    Article  CAS  PubMed  Google Scholar 

  219. Casali N, Nikolayevskyy V, Balabanova Y, et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet. 2014;46:279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Eldholm V, Norheim G, von der Lippe B, et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 2014;15:490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Farhat MR, Shapiro BJ, Kieser KJ, et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet. 2013;45:1183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Safi H, Lingaraju S, Amin A, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-beta-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013;45:1190–7.

    Article  CAS  PubMed  Google Scholar 

  223. Zhang H, Li D, Zhao L, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet. 2013;45:1255–60.

    Article  CAS  PubMed  Google Scholar 

  224. Koser CU, Bryant JM, Becq J, et al. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med. 2013;369:290–2.

    Article  CAS  PubMed  Google Scholar 

  225. Nijhuis RH, van Maarseveen NM, van Hannen EJ, van Zwet AA, Mascini EM. A rapid and high-throughput screening approach for methicillin-resistant Staphylococcus aureus based on the combination of two different real-time PCR assays. J Clin Microbiol. 2014;52:2861–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Paterson GK, Larsen AR, Robb A, et al. The newly described mecA homologue, mecA LGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. J Antimicrob Chemother. 2012;67:2809–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Mason WJ, Blevins JS, Beenken K, Wibowo N, Ojha N, Smeltzer MS. Multiplex PCR protocol for the diagnosis of staphylococcal infection. J Clin Microbiol. 2001;39:3332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lem P, Spiegelman J, Toye B, Ramotar K. Direct detection of mecA, nuc and 16S rRNA genes in BacT/Alert blood culture bottles. Diagn Microbiol Infect Dis. 2001;41:165–8.

    Article  CAS  PubMed  Google Scholar 

  229. Carroll KC, Leonard RB, Newcomb-Gayman PL, Hillyard DR. Rapid detection of the staphylococcal mecA gene from BACTEC blood culture bottles by the polymerase chain reaction. Am J Clin Pathol. 1996;106:600–5.

    Article  CAS  PubMed  Google Scholar 

  230. Jaffe RI, Lane JD, Albury SV, Niemeyer DM. Rapid extraction from and direct identification in clinical samples of methicillin-resistant staphylococci using the PCR. J Clin Microbiol. 2000;38:3407–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Hallin M, Maes N, Byl B, Jacobs F, De Gheldre Y, Struelens MJ. Clinical impact of a PCR assay for identification of Staphylococcus aureus and determination of methicillin resistance directly from blood cultures. J Clin Microbiol. 2003;41:3942–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Maes N, Magdalena J, Rottiers S, De Gheldre Y, Struelens MJ. Evaluation of a triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative Staphylococci and determine methicillin resistance from blood cultures. J Clin Microbiol. 2002;40:1514–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Schmitz FJ, Steiert M, Hofmann B, et al. Detection of staphylococcal genes directly from cerebrospinal and peritoneal fluid samples using a multiplex polymerase chain reaction. Eur J Clin Microbiol Infect Dis. 1998;17:272–4.

    Article  CAS  PubMed  Google Scholar 

  234. Vannuffel P, Laterre PF, Bouyer M, et al. Rapid and specific molecular identification of methicillin-resistant Staphylococcus aureus in endotracheal aspirates from mechanically ventilated patients. J Clin Microbiol. 1998;36:2366–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Kitagawa Y, Ueda M, Ando N, et al. Rapid diagnosis of methicillin-resistant Staphylococcus aureus bacteremia by nested polymerase chain reaction. Ann Surg. 1996;224:665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Grisold AJ, Leitner E, Muhlbauer G, Marth E, Kessler HH. Detection of methicillin-resistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J Clin Microbiol. 2002;40:2392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Rohrer S, Tschierske M, Zbinden R, Berger-Bachi B. Improved methods for detection of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2001;20:267–70.

    Article  CAS  PubMed  Google Scholar 

  238. Elsayed S, Chow BL, Hamilton NL, Gregson DB, Pitout JD, Church DL. Development and validation of a molecular beacon probe-based real-time polymerase chain reaction assay for rapid detection of methicillin resistance in Staphylococcus aureus. Arch Pathol Lab Med. 2003;127:845–9.

    CAS  PubMed  Google Scholar 

  239. Reischl U, Linde HJ, Metz M, Leppmeier B, Lehn N. Rapid identification of methicillin-resistant Staphylococcus aureus and simultaneous species confirmation using real-time fluorescence PCR. J Clin Microbiol. 2000;38:2429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Killgore GE, Holloway B, Tenover FC. A 5′ nuclease PCR (TaqMan) high-throughput assay for detection of the mecA gene in staphylococci. J Clin Microbiol. 2000;38:2516–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Tan TY, Corden S, Barnes R, Cookson B. Rapid identification of methicillin-resistant Staphylococcus aureus from positive blood cultures by real-time fluorescence PCR. J Clin Microbiol. 2001;39:4529–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Shrestha NK, Tuohy MJ, Hall GS, Isada CM, Procop GW. Rapid identification of Staphylococcus aureus and the mecA gene from BacT/ALERT blood culture bottles by using the LightCycler system. J Clin Microbiol. 2002;40:2659–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chan WS, Chan TM, Lai TW, et al. Complementary use of MALDI-TOF MS and real-time PCR-melt curve analysis for rapid identification of methicillin-resistant staphylococci and VRE. J Antimicrob Chemother. 2015;70:441–7.

    Article  CAS  PubMed  Google Scholar 

  244. Wang XR, Wu LF, Wang Y, Ma YY, Chen FH, Ou HL. Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification. Appl Biochem Biotechnol. 2015;175:882–91.

    Article  CAS  PubMed  Google Scholar 

  245. Aires De Sousa M, Santos Sanches I, Ferro ML, De Lencastre H. Epidemiological study of staphylococcal colonization and cross-infection in two West African Hospitals. Microb Drug Resist. 2000;6:133–41.

    Article  CAS  PubMed  Google Scholar 

  246. Becker K, Pagnier I, Schuhen B, et al. Does nasal colonization by methicillin-resistant coagulase-negative staphylococci and methicillin-susceptible Staphylococcus aureus strains occur frequently enough to represent a risk of false-positive methicillin-resistant S. aureus determinations by molecular methods? J Clin Microbiol. 2006;44:229–31.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Faria NA, Conceicao T, Miragaia M, Bartels MD, de Lencastre H, Westh H. Nasal carriage of methicillin resistant staphylococci. Microb Drug Resist. 2014;20:108–17.

    Article  CAS  PubMed  Google Scholar 

  248. Blanc DS, Basset P, Nahimana-Tessemo I, Jaton K, Greub G, Zanetti G. High proportion of wrongly identified methicillin-resistant Staphylococcus aureus carriers by use of a rapid commercial PCR assay due to presence of staphylococcal cassette chromosome element lacking the mecA gene. J Clin Microbiol. 2011;49:722–4.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Stamper PD, Louie L, Wong H, Simor AE, Farley JE, Carroll KC. Genotypic and phenotypic characterization of methicillin-susceptible Staphylococcus aureus isolates misidentified as methicillin-resistant Staphylococcus aureus by the BD GeneOhm MRSA assay. J Clin Microbiol. 2011;49:1240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Wong H, Louie L, Lo RY, Simor AE. Characterization of Staphylococcus aureus isolates with a partial or complete absence of staphylococcal cassette chromosome elements. J Clin Microbiol. 2010;48:3525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bartels MD, Boye K, Rohde SM, et al. A common variant of staphylococcal cassette chromosome mec type IVa in isolates from Copenhagen, Denmark, is not detected by the BD GeneOhm methicillin-resistant Staphylococcus aureus assay. J Clin Microbiol. 2009;47:1524–7.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Laurent C, Bogaerts P, Schoevaerdts D, et al. Evaluation of the Xpert MRSA assay for rapid detection of methicillin-resistant Staphylococcus aureus from nares swabs of geriatric hospitalized patients and failure to detect a specific SCCmec type IV variant. Eur J Clin Microbiol Infect Dis. 2010;29:995–1002.

    Article  CAS  PubMed  Google Scholar 

  253. Hiramatsu K, Ito T, Tsubakishita S, et al. Genomic basis for methicillin resistance in Staphylococcus aureus. Infect Chemother. 2013;45:117–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hardy K, Price C, Szczepura A, et al. Reduction in the rate of methicillin-resistant Staphylococcus aureus acquisition in surgical wards by rapid screening for colonization: a prospective, cross-over study. Clin Microbiol Infect. 2010;16:333–9.

    Article  PubMed  Google Scholar 

  255. Peterson LR, Diekema DJ. To screen or not to screen for methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2010;48:683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Robicsek A, Beaumont JL, Paule SM, et al. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann Intern Med. 2008;148:409–18.

    Article  PubMed  Google Scholar 

  257. Depardieu F, Perichon B, Courvalin P. Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J Clin Microbiol. 2004;42:5857–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Thati V, Shivannavar CT, Gaddad SM. Vancomycin resistance among methicillin resistant Staphylococcus aureus isolates from intensive care units of tertiary care hospitals in Hyderabad. Indian J Med Res. 2011;134:704–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Tiwari HK, Sen MR. Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis. 2006;6:156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Sinsimer D, Leekha S, Park S, et al. Use of a multiplex molecular beacon platform for rapid detection of methicillin and vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2005;43:4585–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR. Molecular characterization of Enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother. 2008;52:2667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lebreton F, Depardieu F, Bourdon N, et al. D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 2011;55:4606–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Xu X, Lin D, Yan G, et al. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother. 2010;54:4643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Fang H, Ohlsson AK, Jiang GX, Ullberg M. Screening for vancomycin-resistant enterococci: an efficient and economical laboratory-developed test. Eur J Clin Microbiol Infect Dis. 2012;31:261–5.

    Article  CAS  PubMed  Google Scholar 

  265. Satake S, Clark N, Rimland D, Nolte FS, Tenover FC. Detection of vancomycin-resistant enterococci in fecal samples by PCR. J Clin Microbiol. 1997;35:2325–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Palladino S, Kay ID, Flexman JP, et al. Rapid detection of vanA and vanB genes directly from clinical specimens and enrichment broths by real-time multiplex PCR assay. J Clin Microbiol. 2003;41:2483–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Paule SM, Trick WE, Tenover FC, et al. Comparison of PCR assay to culture for surveillance detection of vancomycin-resistant enterococci. J Clin Microbiol. 2003;41:4805–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Petrich AK, Luinstra KE, Groves D, Chernesky MA, Mahony JB. Direct detection of vanA and vanB genes in clinical specimens for rapid identification of vancomycin resistant enterococci (VRE) using multiplex PCR. Mol Cell Probes. 1999;13:275–81.

    Article  CAS  PubMed  Google Scholar 

  269. Diekema DJ, Dodgson KJ, Sigurdardottir B, Pfaller MA. Rapid detection of antimicrobial-resistant organism carriage: an unmet clinical need. J Clin Microbiol. 2004;42:2879–83.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Babady NE, Gilhuley K, Cianciminio-Bordelon D, Tang YW. Performance characteristics of the Cepheid Xpert vanA assay for rapid identification of patients at high risk for carriage of vancomycin-resistant Enterococci. J Clin Microbiol. 2012;50:3659–63.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Bourdon N, Berenger R, Lepoultier R, et al. Rapid detection of vancomycin-resistant enterococci from rectal swabs by the Cepheid Xpert vanA/vanB assay. Diagn Microbiol Infect Dis. 2010;67:291–3.

    Article  PubMed  Google Scholar 

  272. Hassan H, Shorman M. Evaluation of the BD GeneOhm MRSA and VanR assays as a rapid screening tool for detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in a Tertiary Hospital in Saudi Arabia. Int J Microbiol. 2011;2011:861514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Marner ES, Wolk DM, Carr J, et al. Diagnostic accuracy of the Cepheid GeneXpert vanA/vanB assay ver. 1.0 to detect the vanA and vanB vancomycin resistance genes in Enterococcus from perianal specimens. Diagn Microbiol Infect Dis. 2011;69:382–9.

    Article  CAS  PubMed  Google Scholar 

  274. Usacheva EA, Ginocchio CC, Morgan M, et al. Prospective, multicenter evaluation of the BD GeneOhm VanR assay for direct, rapid detection of vancomycin-resistant Enterococcus species in perianal and rectal specimens. Am J Clin Pathol. 2010;134:219–26.

    Article  PubMed  Google Scholar 

  275. Werner G, Serr A, Schutt S, et al. Comparison of direct cultivation on a selective solid medium, polymerase chain reaction from an enrichment broth, and the BD GeneOhm VanR Assay for identification of vancomycin-resistant enterococci in screening specimens. Diagn Microbiol Infect Dis. 2011;70:512–21.

    Article  CAS  PubMed  Google Scholar 

  276. Zabicka D, Strzelecki J, Wozniak A, et al. Efficiency of the Cepheid Xpert vanA/vanB assay for screening of colonization with vancomycin-resistant enterococci during hospital outbreak. Antonie Leeuwenhoek. 2012;101:671–5.

    Article  CAS  PubMed  Google Scholar 

  277. Domingo MC, Huletsky A, Giroux R, Picard FJ, Bergeron MG. vanD and vanG-like gene clusters in a Ruminococcus species isolated from human bowel flora. Antimicrob Agents Chemother. 2007;51:4111–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Birgand G, Ruimy R, Schwarzinger M, et al. Rapid detection of glycopeptide-resistant enterococci: impact on decision-making and costs. Antimicrob Resist Infect Control. 2013;2:30.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Girlich D, Poirel L, Nordmann P. Comparison of the SUPERCARBA, CHROMagar KPC, and Brilliance CRE screening media for detection of Enterobacteriaceae with reduced susceptibility to carbapenems. Diagn Microbiol Infect Dis. 2013;75:214–17.

    Article  CAS  PubMed  Google Scholar 

  280. Moran Gilad J, Carmeli Y, Schwartz D, Navon-Venezia S. Laboratory evaluation of the CHROMagar KPC medium for identification of carbapenem-nonsusceptible Enterobacteriaceae. Diagn Microbiol Infect Dis. 2011;70:565–7.

    Article  CAS  PubMed  Google Scholar 

  281. Samra Z, Bahar J, Madar-Shapiro L, Aziz N, Israel S, Bishara J. Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2008;46:3110–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wilkinson KM, Winstanley TG, Lanyon C, Cummings SP, Raza MW, Perry JD. Comparison of four chromogenic culture media for carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2012;50:3102–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol. 2015;10:407–25.

    Article  CAS  PubMed  Google Scholar 

  284. Nordmann P. Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med Mal Infect. 2014;44:51–6.

    Article  CAS  PubMed  Google Scholar 

  285. Gazin M, Paasch F, Goossens H, Malhotra-Kumar S, Mosar WP, Teams SWS. Current trends in culture-based and molecular detection of extended-spectrum-beta-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2012;50:1140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Hindiyeh M, Smollen G, Grossman Z, et al. Rapid detection of bla KPC carbapenemase genes by real-time PCR. J Clin Microbiol. 2008;46:2879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Naas T, Cotellon G, Ergani A, Nordmann P. Real-time PCR for detection of bla OXA-48 genes from stools. J Antimicrob Chemother. 2013;68:101–4.

    Article  CAS  PubMed  Google Scholar 

  288. Naas T, Ergani A, Carrer A, Nordmann P. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrob Agents Chemother. 2011;55:4038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Nakano R, Nakano A, Ishii Y, et al. Rapid detection of the Klebsiella pneumoniae carbapenemase (KPC) gene by loop-mediated isothermal amplification (LAMP). J Infect Chemother. 2015;21:202–6.

    Article  CAS  PubMed  Google Scholar 

  290. Peter H, Berggrav K, Thomas P, et al. Direct detection and genotyping of Klebsiella pneumoniae carbapenemases from urine by use of a new DNA microarray test. J Clin Microbiol. 2012;50:3990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Trung NT, Hien TT, Huyen TT, et al. Simple multiplex PCR assays to detect common pathogens and associated genes encoding for acquired extended spectrum betalactamases (ESBL) or carbapenemases from surgical site specimens in Vietnam. Ann Clin Microbiol Antimicrob. 2015;14:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Findlay J, Hopkins KL, Meunier D, Woodford N. Evaluation of three commercial assays for rapid detection of genes encoding clinically relevant carbapenemases in cultured bacteria. J Antimicrob Chemother. 2015;70:1338–42.

    Article  CAS  PubMed  Google Scholar 

  293. Kaase M, Szabados F, Wassill L, Gatermann SG. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol. 2012;50:3115–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Lafeuille E, Laouira S, Sougakoff W, et al. Detection of OXA-48-like carbapenemase genes by the Xpert(R) Carba-R test: room for improvement. Int J Antimicrob Agents. 2015;45:441–2.

    Article  CAS  PubMed  Google Scholar 

  295. Nijhuis R, Samuelsen O, Savelkoul P, van Zwet A. Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagn Microbiol Infect Dis. 2013;77:316–20.

    Article  CAS  PubMed  Google Scholar 

  296. Livermore DM. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol. 1987;6:439–45.

    Article  CAS  PubMed  Google Scholar 

  297. Martineau F, Picard FJ, Grenier L, Roy PH, Ouellette M, Bergeron MG. Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. The ESPRIT Trial. J Antimicrob Chemother. 2000;46:527–34.

    Article  CAS  PubMed  Google Scholar 

  298. Martineau F, Picard FJ, Lansac N, et al. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Bouricha M, Samad MA, Levy PY, Raoult D, Drancourt M. Point-of-care syndrome-based, rapid diagnosis of infections on commercial ships. J Travel Med. 2014;21:12–6.

    Article  PubMed  Google Scholar 

  300. Fournier PE, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med. 2014;6:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Ruggiero P, McMillen T, Tang YW, Babady NE. Evaluation of the BioFire FilmArray respiratory panel and the GenMark eSensor respiratory viral panel on lower respiratory tract specimens. J Clin Microbiol. 2014;52:288–90.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Chandler DP, Knickerbocker C, Bryant L, et al. Profiling in situ microbial community structure with an amplification microarray. Appl Environ Microbiol. 2013;79:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Foglieni B, Brisci A, San Biagio F, et al. Integrated PCR amplification and detection processes on a Lab-on-Chip platform: a new advanced solution for molecular diagnostics. Clin Chem Lab Med. 2010;48:329–36.

    Article  CAS  PubMed  Google Scholar 

  304. Girard LD, Boissinot K, Peytavi R, Boissinot M, Bergeron MG. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization. Analyst. 2015;140:912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Mani V, Wang S, Inci F, De Libero G, Singhal A, Demirci U. Emerging technologies for monitoring drug-resistant tuberculosis at the point-of-care. Adv Drug Deliv Rev. 2014;78:105–17.

    Article  CAS  PubMed  Google Scholar 

  306. Njoroge SK, Chen HW, Witek MA, Soper SA. Integrated microfluidic systems for DNA analysis. Top Curr Chem. 2011;304:203–60.

    Article  CAS  PubMed  Google Scholar 

  307. Roy E, Stewart G, Mounier M, et al. From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc. Lab Chip. 2015;15:406–16.

    Article  CAS  PubMed  Google Scholar 

  308. Shin Y, Perera AP, Tang WY, et al. A rapid amplification/detection assay for analysis of Mycobacterium tuberculosis using an isothermal and silicon bio-photonic sensor complex. Biosens Bioelectron. 2015;68:390–6.

    Article  CAS  PubMed  Google Scholar 

  309. Summerer D, Hevroni D, Jain A, et al. A flexible and fully integrated system for amplification, detection and genotyping of genomic DNA targets based on microfluidic oligonucleotide arrays. N Biotechnol. 2010;27:149–55.

    Article  CAS  PubMed  Google Scholar 

  310. Ahmed MU, Saaem I, Wu PC, Brown AS. Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol. 2014;34:180–96.

    Article  PubMed  CAS  Google Scholar 

  311. Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev. 2010;62:408–23.

    Article  CAS  PubMed  Google Scholar 

  312. Paniel N, Baudart J, Hayat A, Barthelmebs L. Aptasensor and genosensor methods for detection of microbes in real world samples. Methods. 2013;64:229–40.

    Article  CAS  PubMed  Google Scholar 

  313. Syed MA. Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron. 2014;51:391–400.

    Article  CAS  PubMed  Google Scholar 

  314. Caboche S, Audebert C, Hot D. High-throughput sequencing, a versatile weapon to support genome-based diagnosis in infectious diseases: applications to clinical bacteriology. Pathogens. 2014;3:258–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012;13:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Koser CU, Ellington MJ, Cartwright EJ, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog. 2012;8, e1002824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Koser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30:401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Koser CU, Fraser LJ, Ioannou A, et al. Rapid single-colony whole-genome sequencing of bacterial pathogens. J Antimicrob Chemother. 2014;69:1275–81.

    Article  PubMed  CAS  Google Scholar 

  319. Gordon NC, Price JR, Cole K, et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol. 2014;52:1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Stoesser N, Batty EM, Eyre DW, et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother. 2013;68:2234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013;45:784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol. 2015;53:1072–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Struelens MJ, Brisse S. From molecular to genomic epidemiology: transforming surveillance and control of infectious diseases. Euro Surveill. 2013;18:20386.

    CAS  PubMed  Google Scholar 

  324. Koser CU, Holden MT, Ellington MJ, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 2012;366:2267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Roetzer A, Diel R, Kohl TA, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10, e1001387.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4:148ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  327. Hasman H, Saputra D, Sicheritz-Ponten T, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol. 2014;52:139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Loman NJ, Constantinidou C, Christner M, et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA. 2013;309:1502–10.

    Article  CAS  PubMed  Google Scholar 

  329. Fricke WF, Rasko DA. Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions. Nat Rev Genet. 2014;15:49–55.

    Article  CAS  PubMed  Google Scholar 

  330. Bourbeau PP, Ledeboer NA. Automation in clinical microbiology. J Clin Microbiol. 2013;51:1658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Bissonnette L, Chapdelaine S, Peytavi R, et al. A revolutionary microfluidic stand-alone platform (GenePOC) for nucleic-acid based point-of-care diagnostics. In: Kost GJ, Corbin CM, editors. Global point of care - strategies for disasters, emergencies, and public health resilience. Washington, DC: AACC Press; 2015. p. 235–47.

    Google Scholar 

  332. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12:2118–34.

    Article  CAS  PubMed  Google Scholar 

  333. Eicher D, Merten CA. Microfluidic devices for diagnostic applications. Expert Rev Mol Diagn. 2011;11:505–19.

    Article  PubMed  Google Scholar 

  334. Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011;29:240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. de Paz HD, Brotons P, Munoz-Almagro C. Molecular isothermal techniques for combating infectious diseases: towards low-cost point-of-care diagnostics. Expert Rev Mol Diagn. 2014;14:827–43.

    Article  PubMed  CAS  Google Scholar 

  336. Wang S, Inci F, De Libero G, Singhal A, Demirci U. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol Adv. 2013;31:438–49.

    Article  PubMed  PubMed Central  Google Scholar 

  337. Miro E, Grunbaum F, Gomez L, et al. Characterization of aminoglycoside-modifying enzymes in Enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb Drug Resist. 2013;19:94–9.

    Article  CAS  PubMed  Google Scholar 

  338. Seward RJ, Lambert T, Towner KJ. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. J Med Microbiol. 1998;47:455–62.

    Article  CAS  PubMed  Google Scholar 

  339. Chuanchuen R, Wannaprasat W, Ajariyakhajorn K, Schweizer HP. Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis. Microbiol Immunol. 2008;52:392–8.

    Article  CAS  PubMed  Google Scholar 

  340. Hujer KM, Hujer AM, Hulten EA, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006;50:4114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Ma M, Wang H, Yu Y, Zhang D, Liu S. Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. J Vet Diagn Invest. 2007;19:161–7.

    Article  PubMed  Google Scholar 

  342. Michalska AD, Sacha PT, Ojdana D, Wieczorek A, Tryniszewska E. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland. Braz J Microbiol. 2014;45:1455–8.

    Article  CAS  PubMed  Google Scholar 

  343. Noppe-Leclercq I, Wallet F, Haentjens S, Courcol R, Simonet M. PCR detection of aminoglycoside resistance genes: a rapid molecular typing method for Acinetobacter baumannii. Res Microbiol. 1999;150:317–22.

    Article  CAS  PubMed  Google Scholar 

  344. Toleman MA, Biedenbach D, Bennett DM, Jones RN, Walsh TR. Italian metallo-beta-lactamases: a national problem? Report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2005;55:61–70.

    Article  CAS  PubMed  Google Scholar 

  345. Boehme S, Werner G, Klare I, Reissbrodt R, Witte W. Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Mol Nutr Food Res. 2004;48:522–31.

    Article  CAS  PubMed  Google Scholar 

  346. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol. 2003;41:4089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Klingenberg C, Sundsfjord A, Ronnestad A, Mikalsen J, Gaustad P, Flaegstad T. Phenotypic and genotypic aminoglycoside resistance in blood culture isolates of coagulase-negative staphylococci from a single neonatal intensive care unit, 1989-2000. J Antimicrob Chemother. 2004;54:889–96.

    Article  CAS  PubMed  Google Scholar 

  348. Kao SJ, You I, Clewell DB, et al. Detection of the high-level aminoglycoside resistance gene aph(2″)-Ib in Enterococcus faecium. Antimicrob Agents Chemother. 2000;44:2876–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Choi SM, Kim SH, Kim HJ, et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci. 2003;18:631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Ardic N, Sareyyupoglu B, Ozyurt M, Haznedaroglu T, Ilga U. Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci. Microbiol Res. 2006;161:49–54.

    Article  CAS  PubMed  Google Scholar 

  351. Vanhoof R, Godard C, Content J, Nyssen HJ, Hannecart-Pokorni E. Detection by polymerase chain reaction of genes encoding aminoglycoside-modifying enzymes in methicillin-resistant Staphylococcus aureus isolates of epidemic phage types. Belgian Study Group of Hospital Infections (GDEPIH/GOSPIZ). J Med Microbiol. 1994;41:282–90.

    Article  CAS  PubMed  Google Scholar 

  352. Monecke S, Jatzwauk L, Weber S, Slickers P, Ehricht R. DNA microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from Eastern Saxony. Clin Microbiol Infect. 2008;14:534–45.

    Article  CAS  PubMed  Google Scholar 

  353. Zhu LX, Zhang ZW, Wang C, et al. Use of a DNA microarray for simultaneous detection of antibiotic resistance genes among staphylococcal clinical isolates. J Clin Microbiol. 2007;45:3514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Yean CY, Yin LS, Lalitha P, Ravichandran M. A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species. BMC Microbiol. 2007;7:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Kobayashi N, Alam M, Nishimoto Y, Urasawa S, Uehara N, Watanabe N. Distribution of aminoglycoside resistance genes in recent clinical isolates of Enterococcus faecalis, Enterococcus faecium and Enterococcus avium. Epidemiol Infect. 2001;126:197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother. 2003;47:1423–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Jin W, Wachino J, Kimura K, Yamada K, Arakawa Y. New plasmid-mediated aminoglycoside 6′-N-acetyltransferase, AAC(6′)-Ian, and ESBL, TLA-3, from a Serratia marcescens clinical isolate. J Antimicrob Chemother. 2015;70:1331–7.

    Article  CAS  PubMed  Google Scholar 

  358. Ploy MC, Giamarellou H, Bourlioux P, Courvalin P, Lambert T. Detection of aac(6′)-I genes in amikacin-resistant Acinetobacter spp. by PCR. Antimicrob Agents Chemother. 1994;38:2925–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Huang S, Dai W, Sun S, Zhang X, Zhang L. Prevalence of plasmid-mediated quinolone resistance and aminoglycoside resistance determinants among carbapeneme non-susceptible Enterobacter cloacae. PLoS One. 2012;7, e47636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Islam S, Oh H, Jalal S, et al. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Clin Microbiol Infect. 2009;15:60–6.

    Article  CAS  PubMed  Google Scholar 

  361. Senda K, Arakawa Y, Ichiyama S, et al. PCR detection of metallo-beta-lactamase gene (bla IMP) in gram-negative rods resistant to broad-spectrum β-lactams. J Clin Microbiol. 1996;34:2909–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  362. Hu X, Xu B, Yang Y, et al. A high throughput multiplex PCR assay for simultaneous detection of seven aminoglycoside-resistance genes in Enterobacteriaceae. BMC Microbiol. 2013;13:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Randall LP, Cooles SW, Osborn MK, Piddock LJ, Woodward MJ. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother. 2004;53:208–16.

    Article  CAS  PubMed  Google Scholar 

  364. Osman KM, Hassan WM, Mohamed RA. The consequences of a sudden demographic change on the seroprevalence pattern, virulence genes, identification and characterisation of integron-mediated antibiotic resistance in the Salmonella enterica isolated from clinically diarrhoeic humans in Egypt. Eur J Clin Microbiol Infect Dis. 2014;33:1323–37.

    Article  CAS  PubMed  Google Scholar 

  365. Singh P, Mustapha A. Multiplex TaqMan(R) detection of pathogenic and multi-drug resistant Salmonella. Int J Food Microbiol. 2013;166:213–18.

    Article  CAS  PubMed  Google Scholar 

  366. Madsen L, Aarestrup FM, Olsen JE. Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella typhimurium. Vet Microbiol. 2000;75:73–82.

    Article  CAS  PubMed  Google Scholar 

  367. Woegerbauer M, Zeinzinger J, Springer B, et al. Prevalence of the aminoglycoside phosphotransferase genes aph(3′)-IIIa and aph(3′)-IIa in Escherichia coli, Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica and Staphylococcus aureus isolates in Austria. J Med Microbiol. 2014;63:210–17.

    Article  CAS  PubMed  Google Scholar 

  368. Vila J, Ruiz J, Navia M, et al. Spread of amikacin resistance in Acinetobacter baumannii strains isolated in Spain due to an epidemic strain. J Clin Microbiol. 1999;37:758–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Bercot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71:442–5.

    Article  CAS  PubMed  Google Scholar 

  370. Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45:88–94.

    Article  CAS  PubMed  Google Scholar 

  371. Guo X, Dillon BB, Ginn AN, Wiklendt AM, Partridge SR, Iredell JR. Simple multiplex real-time PCR for rapid detection of common 16S rRNA methyltransferase genes. Diagn Microbiol Infect Dis. 2014;80:29–31.

    Article  CAS  PubMed  Google Scholar 

  372. Yamane K, Wachino J, Suzuki S, et al. 16S rRNA methylase-producing, gram-negative pathogens, Japan. Emerg Infect Dis. 2007;13:642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Davis MA, Baker KN, Orfe LH, Shah DH, Besser TE, Call DR. Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Antimicrob Agents Chemother. 2010;54:2666–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Hidalgo L, Hopkins KL, Gutierrez B, et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother. 2013;68:1543–50.

    Article  CAS  PubMed  Google Scholar 

  375. Zhou Y, Yu H, Guo Q, et al. Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis. 2010;29:1349–53.

    Article  CAS  PubMed  Google Scholar 

  376. Mieskes KT, Rusch-Gerdes S, Truffot-Pernot C, et al. Rapid, simple, and culture-independent detection of rpsL codon 43 mutations that are highly predictive of streptomycin resistance in Mycobacterium tuberculosis. Am J Trop Med Hyg. 2000;63:56–60.

    Article  CAS  PubMed  Google Scholar 

  377. Shi R, Otomo K, Yamada H, Tatsumi T, Sugawara I. Temperature-mediated heteroduplex analysis for the detection of drug-resistant gene mutations in clinical isolates of Mycobacterium tuberculosis by denaturing HPLC, SURVEYOR nuclease. Microbes Infect. 2006;8:128–35.

    Article  CAS  PubMed  Google Scholar 

  378. Siddiqi N, Shamim M, Hussain S, et al. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India. Antimicrob Agents Chemother. 2002;46:443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Mokrousov I, Bhanu NV, Suffys PN, et al. Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates. J Microbiol Methods. 2004;57:323–35.

    Article  CAS  PubMed  Google Scholar 

  380. Cooksey RC, Morlock GP, Holloway BP, Limor J, Hepburn M. Temperature-mediated heteroduplex analysis performed by using denaturing high-performance liquid chromatography to identify sequence polymorphisms in Mycobacterium tuberculosis complex organisms. J Clin Microbiol. 2002;40:1610–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Bergval I, Sengstake S, Brankova N, et al. Combined species identification, genotyping, and drug resistance detection of Mycobacterium tuberculosis cultures by MLPA on a bead-based array. PLoS One. 2012;7, e43240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Sun Y, Li S, Zhou L, et al. A rapid fluorescence polarization-based method for genotypic detection of drug resistance in Mycobacterium tuberculosis. Appl Microbiol Biotechnol. 2014;98:4095–105.

    Article  CAS  PubMed  Google Scholar 

  383. Zheng R, Zhu C, Guo Q, et al. Pyrosequencing for rapid detection of tuberculosis resistance in clinical isolates and sputum samples from re-treatment pulmonary tuberculosis patients. BMC Infect Dis. 2014;14:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Meier A, Kirschner P, Bange FC, Vogel U, Bottger EC. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother. 1994;38:228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Campbell PJ, Morlock GP, Sikes RD, et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2011;55:2032–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Colman RE, Schupp JM, Hicks ND, et al. Detection of Low-level mixed-population drug resistance in Mycobacterium tuberculosis using high fidelity amplicon sequencing. PLoS One. 2015;10, e0126626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Liu Q, Luo T, Li J, Mei J, Gao Q. Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction. J Antimicrob Chemother. 2013;68:1097–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Poudel A, Maharjan B, Nakajima C, et al. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal. Tuberculosis (Edinb). 2013;93:84–8.

    Article  CAS  Google Scholar 

  389. Rodwell TC, Valafar F, Douglas J, et al. Predicting extensively drug-resistant Mycobacterium tuberculosis phenotypes with genetic mutations. J Clin Microbiol. 2014;52:781–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  390. Sowajassatakul A, Prammananan T, Chaiprasert A, Phunpruch S. Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand. BMC Microbiol. 2014;14:165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  391. Neonakis IK, Scoulica EV, Dimitriou SK, Gikas AI, Tselentis YJ. Molecular epidemiology of extended-spectrum beta-lactamases produced by clinical isolates in a university hospital in Greece: detection of SHV-5 in Pseudomonas aeruginosa and prevalence of SHV-12. Microb Drug Resist. 2003;9:161–5.

    Google Scholar 

  392. Paterson DL, Hujer KM, Hujer AM, et al. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother. 2003;47:3554–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Chia JH, Chu C, Su LH, et al. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M beta-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol. 2005;43:4486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Colom K, Perez J, Alonso R, Fernandez-Aranguiz A, Larino E, Cisterna R. Simple and reliable multiplex PCR assay for detection of bla TEM, bla SHV and bla OXA-1 genes in Enterobacteriaceae. FEMS Microbiol Lett. 2003;223:147–51.

    Article  CAS  PubMed  Google Scholar 

  395. Rasheed JK, Jay C, Metchock B, et al. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother. 1997;41:647–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Nuesch-Inderbinen MT, Hachler H, Kayser FH. Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis. 1996;15:398–402.

    Article  CAS  PubMed  Google Scholar 

  397. Hammond DS, Schooneveldt JM, Nimmo GR, Huygens F, Giffard PM. bla(SHV) Genes in Klebsiella pneumoniae: different allele distributions are associated with different promoters within individual isolates. Antimicrob Agents Chemother. 2005;49:256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Schlesinger J, Navon-Venezia S, Chmelnitsky I, et al. Extended-spectrum beta-lactamases among Enterobacter isolates obtained in Tel Aviv, Israel. Antimicrob Agents Chemother. 2005;49:1150–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65:490–5.

    Article  CAS  PubMed  Google Scholar 

  400. Alonso R, Fernandez-Aranguiz A, Colom K, Cisterna R. Non-radioactive PCR-SSCP with a single PCR step for detection of inhibitor resistant beta-lactamases in Escherichia coli. J Microbiol Methods. 2002;50:85–90.

    Article  CAS  PubMed  Google Scholar 

  401. Güerri ML, Aladueña A, Echeíta A, Rotger R. Detection of integrons and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium isolates with resistance to ampicillin and variable susceptibility to amoxicillin-clavulanate. Int J Antimicrob Agent. 2004;24:327–33.

    Article  CAS  Google Scholar 

  402. Mroczkowska JE, Barlow M. Fitness trade-offs in bla TEM evolution. Antimicrob Agents Chemother. 2008;52:2340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Pallecchi L, Malossi M, Mantella A, et al. Detection of CTX-M-type ß-lactamase genes in fecal Escherichia coli isolates from healthy children in Bolivia and Peru. Antimicrob Agents Chemother. 2006;48:4556–61.

    Article  CAS  Google Scholar 

  404. Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother. 2006;57:154–5.

    Article  CAS  PubMed  Google Scholar 

  405. Xu L, Ensor V, Gossain S, Nye K, Hawkey P. Rapid and simple detection of bla CTX-M genes by multiplex PCR assay. J Med Microbiol. 2005;54:1183–7.

    Article  CAS  PubMed  Google Scholar 

  406. Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol. 2004;42:5715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. van Loon HJ, Box ATA, Verhoef J, Fluit AC. Evaluation of genetic determinants involved in β-lactam- and multiresistance in a surgical ICU. Int J Antimicrob Agents. 2004;24:130–4.

    Article  PubMed  CAS  Google Scholar 

  408. Woodford N. Rapid characterization of beta-lactamases by multiplex PCR. Methods Mol Biol. 2010;642:181–92.

    Article  CAS  PubMed  Google Scholar 

  409. Hong SS, Kim K, Huh JY, Jung B, Kang MS, Hong SG. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Ann Lab Med. 2012;32:359–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Pasanen T, Koskela S, Mero S, et al. Rapid molecular characterization of Acinetobacter baumannii clones with rep-PCR and evaluation of carbapenemase genes by new multiplex PCR in Hospital District of Helsinki and Uusimaa. PLoS One. 2014;9, e85854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  411. Guo Q, Wang P, Ma Y, Yang Y, Ye X, Wang M. Co-production of SFO-1 and DHA-1 beta-lactamases and 16S rRNA methylase ArmA in clinical isolates of Klebsiella pneumoniae. J Antimicrob Chemother. 2012;67:2361–6.

    Article  CAS  PubMed  Google Scholar 

  412. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.

    Article  CAS  PubMed  Google Scholar 

  413. Aksoy MD, Cavuslu S, Tugrul HM. Investigation of metallo beta lactamases and oxacilinases in carbapenem resistant Acinetobacter baumannii strains isolated from inpatients. Balkan Med J. 2015;32:79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Fiett J, Baraniak A, Mrowka A, et al. Molecular epidemiology of acquired-metallo-beta-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother. 2006;50:880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Wang CX, Mi ZH. IMP-1 metallo-beta-lactamase-producing Pseudomonas aeruginosa in a university hospital in the People’s Republic of China. J Antimicrob Chemother. 2004;54:1159–60.

    Article  CAS  PubMed  Google Scholar 

  416. Lee K, Ha GY, Shin BM, et al. Metallo-beta-lactamase-producing Gram-negative bacilli in Korean Nationwide Surveillance of Antimicrobial Resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn Microbiol Infect Dis. 2004;50:51–8.

    Article  CAS  PubMed  Google Scholar 

  417. Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43:3129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Hirakata Y, Izumikawa K, Yamaguchi T, et al. Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant gram-negative rods carrying the metallo-beta-lactamase gene bla IMP. Antimicrob Agents Chemother. 1998;42:2006–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  419. Shibata N, Doi Y, Yamane K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;41:5407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Geyer CN, Reisbig MD, Hanson ND. Development of a TaqMan multiplex PCR assay for detection of plasmid-mediated AmpC beta-lactamase genes. J Clin Microbiol. 2012;50:3722–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC ß-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40:2153–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  422. Papanicolas LE, Bell JM, Bastian I. Performance of phenotypic tests for detection of penicillinase in Staphylococcus aureus isolates from Australia. J Clin Microbiol. 2014;52:1136–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  423. Pereira LA, Harnett GB, Hodge MM, Cattell JA, Speers DJ. Real-time PCR assay for detection of blaZ genes in Staphylococcus aureus clinical isolates. J Clin Microbiol. 2014;52:1259–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  424. Schmitz FJ, Mackenzie CR, Hofmann B, et al. Specific information concerning taxonomy, pathogenicity and methicillin resistance of staphylococci obtained by a multiplex PCR. J Med Microbiol. 1997;46:773–8.

    Article  CAS  PubMed  Google Scholar 

  425. Kobayashi N, Wu H, Kojima K, et al. Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiol Infect. 1994;113:259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Tsuji H, Tsuru T, Okuzumi K. Detection of methicillin-resistant Staphylococcus aureus in donor eye preservation media by polymerase chain reaction. Jpn J Ophthalmol. 1998;42:352–6.

    Article  CAS  PubMed  Google Scholar 

  427. Skov RL, Pallesen LV, Poulsen RL, Espersen F. Evaluation of a new 3-h hybridization method for detecting the mecA gene in Staphylococcus aureus and comparison with existing genotypic and phenotypic susceptibility testing methods. J Antimicrob Chemother. 1999;43:467–75.

    Article  CAS  PubMed  Google Scholar 

  428. Olsson-Liljequist B, Larsson P, Ringertz S, Lofdahl S. Use of a DNA hybridization method to verify results of screening for methicillin resistance in staphylococci. Eur J Clin Microbiol Infect Dis. 1993;12:527–33.

    Article  CAS  PubMed  Google Scholar 

  429. Ubukata K, Nakagami S, Nitta A, et al. Rapid detection of the mecA gene in methicillin-resistant staphylococci by enzymatic detection of polymerase chain reaction products. J Clin Microbiol. 1992;30:1728–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  430. Hamels S, Gala JL, Dufour S, Vannuffel P, Zammatteo N, Remacle J. Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species, and methicillin resistance. BioTechniques. 2001;31:1364–6. 1368, 1370–1362.

    CAS  PubMed  Google Scholar 

  431. Kolbert CP, Arruda J, Varga-Delmore P, et al. Branched-DNA assay for detection of the mecA gene in oxacillin-resistant and oxacillin-sensitive staphylococci. J Clin Microbiol. 1998;36:2640–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  432. Fong WK, Modrusan Z, McNevin JP, Marostenmaki J, Zin B, Bekkaoui F. Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology. J Clin Microbiol. 2000;38:2525–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  433. Kearns AM, Seiders PR, Wheeler J, Freeman R, Steward M. Rapid detection of methicillin-resistant staphylococci by multiplex PCR. J Hosp Infect. 1999;43:33–7.

    Article  CAS  PubMed  Google Scholar 

  434. Vannuffel P, Gigi J, Ezzedine H, et al. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol. 1995;33:2864–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  435. Smyth RW, Kahlmeter G, Olsson Liljequist B, Hoffman B. Methods for identifying methicillin resistance in Staphylococcus aureus. J Hosp Infect. 2001;48:103–7.

    Article  CAS  PubMed  Google Scholar 

  436. Petersson AC, Miorner H. Species-specific identification of methicillin resistance in staphylococci. Eur J Clin Microbiol Infect Dis. 1995;14:206–11.

    Article  CAS  PubMed  Google Scholar 

  437. Salisbury SM, Sabatini LM, Spiegel CA. Identification of methicillin-resistant staphylococci by multiplex polymerase chain reaction assay. Am J Clin Pathol. 1997;107:368–73.

    Article  CAS  PubMed  Google Scholar 

  438. Siripornmongcolchai T, Chomvarin C, Chaicumpar K, Limpaiboon T, Wongkhum C. Evaluation of different primers for detecting mecA gene by PCR in comparison with phenotypic methods for discrimination of methicillin-resistant Staphylococcus aureus. Southeast Asian J Trop Med Public Health. 2002;33:758–63.

    CAS  PubMed  Google Scholar 

  439. Fang H, Hedin G. Rapid screening and identification of methicillin-resistant Staphylococcus aureus from clinical samples by selective-broth and real-time PCR assay. J Clin Microbiol. 2003;41:2894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol. 1991;29:2240–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  441. Kim JU, Cha CH, An HK, Lee HJ, Kim MN. Multiplex real-time PCR assay for detection of methicillin-resistant Staphylococcus aureus (MRSA) strains suitable in regions of high MRSA endemicity. J Clin Microbiol. 2013;51:1008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Weidner J, Cassens U, Gohde W, Wullenweber J, Greve B. A new triplex real time PCR which distinguishes between MRSA, MSSA, and mecA coagulase negative strains by means of melting point analysis using SYTO 9. Clin Lab. 2013;59:795–804.

    Article  CAS  PubMed  Google Scholar 

  443. Granger K, Rundell MS, Pingle MR, et al. Multiplex PCR-ligation detection reaction assay for simultaneous detection of drug resistance and toxin genes from Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. J Clin Microbiol. 2010;48:277–80.

    Article  CAS  PubMed  Google Scholar 

  444. Cuny C, Witte W. PCR for the identification of methicillin-resistant Staphylococcus aureus (MRSA) strains using a single primer pair specific for SCCmec elements and the neighbouring chromosome-borne orfX. Clin Microbiol Infect. 2005;11:834–7.

    Article  CAS  PubMed  Google Scholar 

  445. Nagai K, Shibasaki Y, Hasegawa K, et al. Evaluation of PCR primers to screen for Streptococcus pneumoniae isolates and beta-lactam resistance, and to detect common macrolide resistance determinants. J Antimicrob Chemother. 2001;48:915–18.

    Article  CAS  PubMed  Google Scholar 

  446. Jalal H, Organji S, Reynolds J, Bennett D, O’Mason Jr E, Millar MR. Determination of penicillin susceptibility of Streptococcus pneumoniae using the polymerase chain reaction. Mol Pathol. 1997;50:45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  447. du Plessis M, Smith AM, Klugman KP. Application of pbp1A PCR in identification of penicillin-resistant Streptococcus pneumoniae. J Clin Microbiol. 1999;37:628–32.

    PubMed  PubMed Central  Google Scholar 

  448. Zhanel GG, Wang X, Nichol K, et al. Molecular characterisation of Canadian paediatric multidrug-resistant Streptococcus pneumoniae from 1998-2004. Int J Antimicrob Agents. 2006;28:465–71.

    Article  CAS  PubMed  Google Scholar 

  449. Ubukata K, Asahi Y, Yamane A, Konno M. Combinational detection of autolysin and penicillin-binding protein 2B genes of Streptococcus pneumoniae by PCR. J Clin Microbiol. 1996;34:592–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  450. du Plessis M, Smith AM, Klugman KP. Rapid detection of penicillin-resistant Streptococcus pneumoniae in cerebrospinal fluid by a seminested-PCR strategy. J Clin Microbiol. 1998;36:453–7.

    PubMed  PubMed Central  Google Scholar 

  451. Beall B, Facklam RR, Jackson DM, Starling HH. Rapid screening for penicillin susceptibility of systemic pneumococcal isolates by restriction enzyme profiling of the pbp2B gene. J Clin Microbiol. 1998;36:2359–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  452. O’Neill AM, Gillespie SH, Whiting GC. Detection of penicillin susceptibility in Streptococcus pneumoniae by pbp2b PCR-restriction fragment length polymorphism analysis. J Clin Microbiol. 1999;37:157–60.

    PubMed  PubMed Central  Google Scholar 

  453. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996;40:2562–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  454. Arana DM, Rojo-Bezares B, Torres C, Alos JI. First clinical isolate in Europe of clindamycin-resistant group B Streptococcus mediated by the lnu(B) gene. Rev Esp Quimioter. 2014;27:106–9.

    PubMed  Google Scholar 

  455. Atkinson CT, Kunde DA, Tristram SG. Acquired macrolide resistance genes in Haemophilus influenzae? J Antimicrob Chemother. 2015;70(8):2234–6.

    Article  CAS  PubMed  Google Scholar 

  456. Zmantar T, Kouidhi B, Miladi H, Bakhrouf A. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res Notes. 2011;4:453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Amezaga MR, McKenzie H. Molecular epidemiology of macrolide resistance in β-haemolytic streptococci of Lancefield groups A, B, C and G and evidence for a new mef element in group G streptococci that carries allelic variants of mef and msr(D). J Antimicrob Chemother. 2006;57:443–9.

    Article  CAS  PubMed  Google Scholar 

  458. Malhotra-Kumar S, Lammens C, Piessens J, Goossens H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother. 2005;49:4798–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Shortridge VD, Flamm RK, Ramer N, Beyer J, Tanaka SK. Novel mechanism of macrolide resistance in Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 1996;26:73–8.

    Article  CAS  PubMed  Google Scholar 

  460. Clancy J, Petitpas J, Dib-Hajj F, et al. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol. 1996;22:867–79.

    Article  CAS  PubMed  Google Scholar 

  461. Chisholm SA, Owen RJ, Teare EL, Saverymuttu S. PCR-based diagnosis of Helicobacter pylori infection and real-time determination of clarithromycin resistance directly from human gastric biopsy samples. J Clin Microbiol. 2001;39:1217–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. De Francesco V, Zullo A, Giorgio F, et al. Change of point mutations in Helicobacter pylori rRNA associated with clarithromycin resistance in Italy. J Med Microbiol. 2014;63:453–7.

    Article  PubMed  CAS  Google Scholar 

  463. Hao H, Liu J, Kuang X, et al. Identification of Campylobacter jejuni and determination of point mutations associated with macrolide resistance using a multiplex TaqMan MGB real-time PCR. J Appl Microbiol. 2015;118:1418–25.

    Article  CAS  PubMed  Google Scholar 

  464. Liu Y, Ye X, Zhang H, Wu Z, Xu X. Rapid detection of Mycoplasma pneumoniae and its macrolide-resistance mutation by Cycleave PCR. Diagn Microbiol Infect Dis. 2014;78:333–7.

    Article  CAS  PubMed  Google Scholar 

  465. Touati A, Peuchant O, Jensen JS, Bebear C, Pereyre S. Direct detection of macrolide resistance in Mycoplasma genitalium isolates from clinical specimens from France by use of real-time PCR and melting curve analysis. J Clin Microbiol. 2014;52:1549–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  466. Wold C, Sorthe J, Hartgill U, Olsen AO, Moghaddam A, Reinton N. Identification of macrolide-resistant Mycoplasma genitalium using real-time PCR. J Eur Acad Dermatol Venereol. 2015;29(8):1616–20.

    Article  CAS  PubMed  Google Scholar 

  467. Robredo B, Singh KV, Torres C, Murray BE. Streptogramin resistance and shared pulsed-field gel electrophoresis patterns in vanA-containing Enterococcus faecium and Enterococcus hirae isolated from humans and animals in Spain. Microb Drug Resist. 2000;6:305–11.

    Article  CAS  PubMed  Google Scholar 

  468. Lozano C, Aspiroz C, Rezusta A, et al. Identification of novel vga(A)-carrying plasmids and a Tn5406-like transposon in meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis of human and animal origin. Int J Antimicrob Agents. 2012;40:306–12.

    Article  CAS  PubMed  Google Scholar 

  469. Allignet J, el Solh N. Diversity among the gram-positive acetyltransferases inactivating streptogramin A and structurally related compounds and characterization of a new staphylococcal determinant, vatB. Antimicrob Agents Chemother. 1995;39:2027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Werner G, Klare I, Heier H, et al. Quinupristin/dalfopristin-resistant enterococci of the satA (vatD) and satG (vatE) genotypes from different ecological origins in Germany. Microb Drug Resist. 2000;6:37–47.

    Article  CAS  PubMed  Google Scholar 

  471. Werner G, Strommenger B, Klare I, Witte W. Molecular detection of linezolid resistance in Enterococcus faecium and Enterococcus faecalis by use of 5′ nuclease real-time PCR compared to a modified classical approach. J Clin Microbiol. 2004;42:5327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Woodford N, Tysall L, Auckland C, et al. Detection of oxazolidinone-resistant Enterococcus faecalis and Enterococcus faecium strains by real-time PCR and PCR-restriction fragment length polymorphism analysis. J Clin Microbiol. 2002;40:4298–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Gabriel EM, Douarre PE, Fitzgibbon S, et al. High-resolution melting analysis for rapid detection of linezolid resistance (mediated by G2576T mutation) in Staphylococcus epidermidis. J Microbiol Methods. 2012;90:134–6.

    Article  CAS  PubMed  Google Scholar 

  474. Schnitzler P, Schulz K, Lampson C, Geiss M, Geiss HK. Molecular analysis of linezolid resistance in clinical Enterococcus faecium isolates by polymerase chain reaction and pyrosequencing. Eur J Clin Microbiol Infect Dis. 2011;30:121–5.

    Article  CAS  PubMed  Google Scholar 

  475. Takaya A, Kimura A, Sato Y, et al. Molecular characterization of linezolid-resistant CoNS isolates in Japan. J Antimicrob Chemother. 2015;70:658–63.

    Article  CAS  PubMed  Google Scholar 

  476. Toh SM, Xiong L, Arias CA, et al. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol. 2007;64:1506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  477. Mendes RE, Deshpande LM, Farrell DJ, Spanu T, Fadda G, Jones RN. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J Antimicrob Chemother. 2010;65:2329–35.

    Article  CAS  PubMed  Google Scholar 

  478. Rajan V, Kumar VG, Gopal S. A cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. Indian J Med Res. 2014;139:463–7.

    PubMed  PubMed Central  Google Scholar 

  479. Wang L, He Y, Xia Y, Wang H, Liang S. Investigation of mechanism and molecular epidemiology of linezolid-resistant Enterococcus faecalis in China. Infect Genet Evol. 2014;26:14–9.

    Article  PubMed  Google Scholar 

  480. Pan XS, Ambler J, Mehtar S, Fisher LM. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1996;40:2321–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  481. Cheng AF, Yew WW, Chan EW, Chin ML, Hui MM, Chan RC. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2004;48:596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Dauendorffer JN, Guillemin I, Aubry A, et al. Identification of mycobacterial species by PCR sequencing of quinolone resistance-determining regions of DNA gyrase genes. J Clin Microbiol. 2003;41:1311–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  483. Takahashi H, Kikuchi T, Shoji S, et al. Characterization of gyrA, gyrB, grlA and grlB mutations in fluoroquinolone-resistant clinical isolates of Staphylococcus aureus. J Antimicrob Chemother. 1998;41:49–57.

    Article  CAS  PubMed  Google Scholar 

  484. Weigel LM, Steward CD, Tenover FC. gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob Agents Chemother. 1998;42:2661–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  485. Ozeki S, Deguchi T, Yasuda M, et al. Development of a rapid assay for detecting gyrA mutations in Escherichia coli and determination of incidence of gyrA mutations in clinical strains isolated from patients with complicated urinary tract infections. J Clin Microbiol. 1997;35:2315–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  486. Qiang YZ, Qin T, Fu W, Cheng WP, Li YS, Yi G. Use of a rapid mismatch PCR method to detect gyrA and parC mutations in ciprofloxacin-resistant clinical isolates of Escherichia coli. J Antimicrob Chemother. 2002;49:549–52.

    Article  CAS  PubMed  Google Scholar 

  487. Bachoual R, Tankovic J, Soussy CJ. Analysis of the mutations involved in fluoroquinolone resistance of in vivo and in vitro mutants of Escherichia coli. Microb Drug Resist. 1998;4:271–6.

    Google Scholar 

  488. Walker RA, Saunders N, Lawson AJ, et al. Use of a LightCycler gyrA mutation assay for rapid identification of mutations conferring decreased susceptibility to ciprofloxacin in multiresistant Salmonella enterica serotype Typhimurium DT104 isolates. J Clin Microbiol. 2001;39:1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Ling JM, Chan EW, Lam AW, Cheng AF. Mutations in topoisomerase genes of fluoroquinolone-resistant Salmonellae in Hong Kong. Antimicrob Agents Chemother. 2003;47:3567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E. Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fluoroquinolone-resistant strains in the field. Antimicrob Agents Chemother. 1999;43:2131–7.

    Google Scholar 

  491. Zirnstein G, Li Y, Swaminathan B, Angulo F. Ciprofloxacin resistance in Campylobacter jejuni isolates: detection of gyrA resistance mutations by mismatch amplification mutation assay PCR and DNA sequence analysis. J Clin Microbiol. 1999;37:3276–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  492. Wilson DL, Abner SR, Newman TC, Mansfield LS, Linz JE. Identification of ciprofloxacin-resistant Campylobacter jejuni by use of a fluorogenic PCR assay. J Clin Microbiol. 2000;38:3971–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  493. Alonso R, Morales G, Escalante R, Campanario E, Sastre L, Martinez-Beltran JL. An extended PCR-RFLP assay for detection of parC, parE and gyrA mutations in fluoroquinolone-resistant Streptococcus pneumoniae. J Antimicrob Chemother. 2004;53:682–3.

    Article  CAS  PubMed  Google Scholar 

  494. Morrissey I, Farrell DJ, Bakker S, Buckridge S, Felmingham D. Molecular characterization and antimicrobial susceptibility of fluoroquinolone-resistant or -susceptible Streptococcus pneumoniae from Hong Kong. Antimicrob Agents Chemother. 2003;47:1433–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  495. Pestova E, Beyer R, Cianciotto NP, Noskin GA, Peterson LR. Contribution of topoisomerase IV and DNA gyrase mutations in Streptococcus pneumoniae to resistance to novel fluoroquinolones. Antimicrob Agents Chemother. 1999;43:2000–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  496. Shigemura K, Shirakawa T, Okada H, et al. Rapid detection of gyrA and parC mutations in fluoroquinolone-resistant Neisseria gonorrhoeae by denaturing high-performance liquid chromatography. J Microbiol Methods. 2004;59:415–21.

    Article  CAS  PubMed  Google Scholar 

  497. Sultan Z, Nahar S, Wretlind B, Lindback E, Rahman M. Comparison of mismatch amplification mutation assay with DNA sequencing for characterization of fluoroquinolone resistance in Neisseria gonorrhoeae. J Clin Microbiol. 2004;42:591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Tanaka M, Nakayama H, Haraoka M, Saika T. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacin-resistant isolates in Japan, 1993 to 1998. J Clin Microbiol. 2000;38:521–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  499. Li Z, Yokoi S, Kawamura Y, Maeda S, Ezaki T, Deguchi T. Rapid detection of quinolone resistance-associated gyrA mutations in Neisseria gonorrhoeae with a LightCycler. J Infect Chemother. 2002;8:145–50.

    Article  CAS  PubMed  Google Scholar 

  500. Lee JK, Lee YS, Park YK, Kim BS. Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2005;25:290–5.

    Article  CAS  PubMed  Google Scholar 

  501. Lee AS, Tang LL, Lim IH, Wong SY. Characterization of pyrazinamide and ofloxacin resistance among drug resistant Mycobacterium tuberculosis isolates from Singapore. Int J Infect Dis. 2002;6:48–51.

    Article  PubMed  Google Scholar 

  502. Bergval IL, Vijzelaar RN, Dalla Costa ER, et al. Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis. J Clin Microbiol. 2008;46:689–99.

    Article  CAS  PubMed  Google Scholar 

  503. Jeong HS, Kim JA, Shin JH, et al. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microb Drug Resist. 2011;17:551–7.

    Article  CAS  PubMed  Google Scholar 

  504. Lawung R, Cherdtrakulkiat R, Charoenwatanachokchai A, Nabu S, Suksaluk W, Prachayasittikul V. One-step PCR for the identification of multiple antimicrobial resistance in Neisseria gonorrhoeae. J Microbiol Methods. 2009;77:323–5.

    Article  CAS  PubMed  Google Scholar 

  505. Nakano R, Okamoto R, Nakano A, et al. Rapid assay for detecting gyrA and parC mutations associated with fluoroquinolone resistance in Enterobacteriaceae. J Microbiol Methods. 2013;94:213–16.

    Article  CAS  PubMed  Google Scholar 

  506. Zhao LL, Xia Q, Lin N, Liu ZG, Zhao XQ, Wan KL. Multiplex allele-specific PCR combined with PCR-RFLP analysis for rapid detection of gyrA gene fluoroquinolone resistance mutations in Mycobacterium tuberculosis. J Microbiol Methods. 2012;88:175–8.

    Article  CAS  PubMed  Google Scholar 

  507. Arnold C, Westland L, Mowat G, Underwood A, Magee J, Gharbia S. Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clin Microbiol Infect. 2005;11:122–30.

    Article  CAS  PubMed  Google Scholar 

  508. Herrera-León L, Molinas T, Saíz P, Sáez-Nieto JA, Jiménez MS. New multiplex PCR for rapid detection of isoniazid-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2005;49:144–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  509. Lapierre P, Huletsky A, Fortin V, et al. Real-time PCR assay for detection of fluoroquinolone resistance associated with grlA mutations in Staphylococcus aureus. J Clin Microbiol. 2003;41:3246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  510. Decousser JW, Methlouthi I, Pina P, Collignon A, Allouch P. New real-time PCR assay using locked nucleic acid probes to assess prevalence of ParC mutations in fluoroquinolone-susceptible Streptococcus pneumoniae isolates from France. Antimicrob Agents Chemother. 2006;50:1594–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  511. Vakili B, Khorvash F, Fazeli H, Khaleghi M. Detection of quinolone-resistance mutations of parC gene in clinical isolates of Acinetobacter baumannii in Iran. J Res Med Sci. 2014;19:567–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  512. Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol. 2013;62:1823–7.

    Article  CAS  PubMed  Google Scholar 

  513. Guillard T, Moret H, Brasme L, et al. Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR. Diagn Microbiol Infect Dis. 2011;70:253–9.

    Article  CAS  PubMed  Google Scholar 

  514. Cavaco LM, Hasman H, Xia S, Aarestrup FM. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother. 2009;53:603–8.

    Article  CAS  PubMed  Google Scholar 

  515. Park KS, Kim MH, Park TS, Nam YS, Lee HJ, Suh JT. Prevalence of the plasmid-mediated quinolone resistance genes, aac(6′)-Ib-cr, qepA, and oqxAB in clinical isolates of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Korea. Ann Clin Lab Sci. 2012;42:191–7.

    CAS  PubMed  Google Scholar 

  516. Wareham DW, Umoren I, Khanna P, Gordon NC. Allele-specific polymerase chain reaction (PCR) for rapid detection of the aac(6′)-Ib-cr quinolone resistance gene. Int J Antimicrob Agents. 2010;36:476–7.

    Article  CAS  PubMed  Google Scholar 

  517. Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:3582–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  518. Trieu-Cuot P, de Cespedes G, Bentorcha F, Delbos F, Gaspar E, Horaud T. Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: characterization of a new CAT determinant. Antimicrob Agents Chemother. 1993;37:2593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  519. Zolezzi PC, Laplana LM, Calvo CR, Cepero PG, Erazo MC, Gómez-Lus R. Molecular basis of resistance to macrolides and other antibiotics in commensal viridans group streptococci and Gemella spp. and transfer of resistance genes to Streptococcus pneumoniae. Antimicrob Agents Chemother. 2004;48:3462–7.

    Article  CAS  PubMed Central  Google Scholar 

  520. Rajtak U, Leonard N, Bolton D, Fanning S. A real-time multiplex SYBR Green I polymerase chain reaction assay for rapid screening of Salmonella serotypes prevalent in the European Union. Foodborne Pathog Dis. 2011;8:769–80.

    Article  CAS  PubMed  Google Scholar 

  521. Curiao T, Canton R, Garcillan-Barcia MP, de la Cruz F, Baquero F, Coque TM. Association of composite IS26-sul3 elements with highly transmissible IncI1 plasmids in extended-spectrum-beta-lactamase-producing Escherichia coli clones from humans. Antimicrob Agents Chemother. 2011;55:2451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  522. Post V, Hall RM. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53:2667–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Ahmad S, Mokaddas E, Jaber AA. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis strains by PCR-RFLP targeting embB codons 306 and 497 and iniA codon 501 mutations. Mol Cell Probes. 2004;18:299–306.

    Article  CAS  PubMed  Google Scholar 

  524. Wada T, Maeda S, Tamaru A, Imai S, Hase A, Kobayashi K. Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR. J Clin Microbiol. 2004;42:5277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Johnson R, Jordaan AM, Pretorius L, et al. Ethambutol resistance testing by mutation detection. Int J Tuberc Lung Dis. 2006;10:68–73.

    CAS  PubMed  Google Scholar 

  526. Jnawali HN, Hwang SC, Park YK, et al. Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagn Microbiol Infect Dis. 2013;76:187–96.

    Article  CAS  PubMed  Google Scholar 

  527. Yoon JH, Nam JS, Kim KJ, Ro YT. Simple and rapid discrimination of embB codon 306 mutations in Mycobacterium tuberculosis clinical isolates by a real-time PCR assay using an LNA-TaqMan probe. J Microbiol Methods. 2013;92:301–6.

    Article  CAS  PubMed  Google Scholar 

  528. Parsons LM, Salfinger M, Clobridge A, et al. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob Agents Chemother. 2005;49:2218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  529. Suzuki Y, Suzuki A, Tamaru A, Katsukawa C, Oda H. Rapid detection of pyrazinamide-resistant Mycobacterium tuberculosis by a PCR-based in vitro system. J Clin Microbiol. 2002;40:501–7.

    Google Scholar 

  530. McCammon MT, Gillette JS, Thomas DP, et al. Detection by denaturing gradient gel electrophoresis of pncA mutations associated with pyrazinamide resistance in Mycobacterium tuberculosis isolates from the United States-Mexico border region. Antimicrob Agents Chemother. 2005;49:2210–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  531. Liu YP, Behr MA, Small PM, Kurn N. Genotypic determination of Mycobacterium tuberculosis antibiotic resistance using a novel mutation detection method, the branch migration inhibition M. tuberculosis antibiotic resistance test. J Clin Microbiol. 2000;38:3656–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  532. Streicher EM, Maharaj K, York T, et al. Rapid sequencing of the Mycobacterium tuberculosis pncA gene for detection of pyrazinamide susceptibility. J Clin Microbiol. 2014;52:4056–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  533. Tan Y, Hu Z, Zhang T, et al. Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J Clin Microbiol. 2014;52:291–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  534. Xia Q, Zhao LL, Li F, et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Zhejiang, China. Antimicrob Agents Chemother. 2015;59:1690–5.

    Article  PubMed  PubMed Central  Google Scholar 

  535. Kapur V, Li LL, Hamrick MR, et al. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995;119:131–8.

    CAS  PubMed  Google Scholar 

  536. Kim SY, Park YJ, Song E, et al. Evaluation of the CombiChip Mycobacteria drug-resistance detection DNA chip for identifying mutations associated with resistance to isoniazid and rifampin in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 2006;54:203–10.

    Article  CAS  PubMed  Google Scholar 

  537. Scarpellini P, Braglia S, Carrera P, et al. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob Agents Chemother. 1999;43:2550–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  538. Nash KA, Gaytan A, Inderlied CB. Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J Infect Dis. 1997;176:533–6.

    Article  CAS  PubMed  Google Scholar 

  539. Thomas GA, Williams DL, Soper SA. Capillary electrophoresis-based heteroduplex analysis with a universal heteroduplex generator for detection of point mutations associated with rifampin resistance in tuberculosis. Clin Chem. 2001;47:1195–203.

    CAS  PubMed  Google Scholar 

  540. Garcia L, Alonso-Sanz M, Rebollo MJ, Tercero JC, Chaves F. Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates in Spain and their rapid detection by PCR-enzyme-linked immunosorbent assay. J Clin Microbiol. 2001;39:1813–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  541. El-Hajj HH, Marras SA, Tyagi S, Kramer FR, Alland D. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J Clin Microbiol. 2001;39:4131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  542. Fan XY, Hu ZY, Xu FH, Yan ZQ, Guo SQ, Li ZM. Rapid detection of rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates in shanghai by using the amplification refractory mutation system. J Clin Microbiol. 2003;41:993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  543. Carvalho WS, Spindola de Miranda S, Costa KM, et al. Low-stringency single-specific-primer PCR as a tool for detection of mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2003;41:3384–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  544. Iwamoto T, Sonobe T. Peptide nucleic acid-mediated competitive PCR clamping for detection of rifampin-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2004;48:4023–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  545. Espasa M, Gonzalez-Martin J, Alcaide F, et al. Direct detection in clinical samples of multiple gene mutations causing resistance of Mycobacterium tuberculosis to isoniazid and rifampicin using fluorogenic probes. J Antimicrob Chemother. 2005;55:860–5.

    Article  CAS  PubMed  Google Scholar 

  546. Park YK, Shin S, Ryu S, et al. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea. J Microbiol Methods. 2005;63:165–72.

    Article  CAS  PubMed  Google Scholar 

  547. Nikolayevsky V, Brown T, Balabanova Y, Ruddy M, Fedorin I, Drobniewski F. Detection of mutations associated with isoniazid and rifampin resistance in Mycobacterium tuberculosis isolates from Samara Region, Russian Federation. J Clin Microbiol. 2004;42:4498–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  548. Bockstahler LE, Li Z, Nguyen NY, et al. Peptide nucleic acid probe detection of mutations in Mycobacterium tuberculosis genes associated with drug resistance. BioTechniques. 2002;32:508–10. 512, 514.

    CAS  PubMed  Google Scholar 

  549. Telenti A, Honore N, Bernasconi C, et al. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol. 1997;35:719–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  550. Cooksey RC, Holloway BP, Oldenburg MC, Listenbee S, Miller CW. Evaluation of the invader assay, a linear signal amplification method, for identification of mutations associated with resistance to rifampin and isoniazid in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000;44:1296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  551. Chen X, Wang B, Yang W, et al. Rolling circle amplification for direct detection of rpoB gene mutations in Mycobacterium tuberculosis isolates from clinical specimens. J Clin Microbiol. 2014;52:1540–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  552. Deng M, Feng S, Luo F, et al. Visual detection of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis strains by use of an asymmetrically split peroxidase DNAzyme. J Clin Microbiol. 2012;50:3443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  553. Engstrom A, Zardan Gomez de la Torre T, Stromme M, Nilsson M, Herthnek D. Detection of rifampicin resistance in Mycobacterium tuberculosis by padlock probes and magnetic nanobead-based readout. PLoS One. 2013;8, e62015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  554. Guo Q, Yu Y, Zhu YL, et al. Rapid detection of rifampin-resistant clinical isolates of Mycobacterium tuberculosis by reverse dot blot hybridization. Biomed Environ Sci. 2015;28:25–35.

    PubMed  Google Scholar 

  555. Gupta A, Prakash P, Singh SK, Anupurba S. Rapid genotypic detection of rpoB and katG gene mutations in Mycobacterium tuberculosis clinical isolates from Northern India as determined by MAS-PCR. J Clin Lab Anal. 2013;27:31–7.

    Article  CAS  PubMed  Google Scholar 

  556. Krothapalli S, May MK, Hestekin CN. Capillary electrophoresis-single strand conformation polymorphism for the detection of multiple mutations leading to tuberculosis drug resistance. J Microbiol Methods. 2012;91:147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  557. Pang Y, Liu G, Wang Y, Zheng S, Zhao YL. Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level, rifampin-resistant mutations in Mycobacterium tuberculosis. J Microbiol Methods. 2013;93:32–6.

    Article  CAS  PubMed  Google Scholar 

  558. Pedrosa P, Veigas B, Machado D, Couto I, Viveiros M, Baptista PV. Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis. Tuberculosis (Edinb). 2014;94:332–7.

    Article  CAS  Google Scholar 

  559. Shi X, Zhang C, Shi M, et al. Development of a single multiplex amplification refractory mutation system PCR for the detection of rifampin-resistant Mycobacterium tuberculosis. Gene. 2013;530:95–9.

    Article  CAS  PubMed  Google Scholar 

  560. Veigas B, Pedrosa P, Couto I, Viveiros M, Baptista PV. Isothermal DNA amplification coupled to Au-nanoprobes for detection of mutations associated to Rifampicin resistance in Mycobacterium tuberculosis. J Nanobiotechnol. 2013;11:38.

    Article  CAS  Google Scholar 

  561. Leung ET, Kam KM, Chiu A, et al. Detection of katG Ser315Thr substitution in respiratory specimens from patients with isoniazid-resistant Mycobacterium tuberculosis using PCR-RFLP. J Med Microbiol. 2003;52:999–1003.

    Article  CAS  PubMed  Google Scholar 

  562. Riahi F, Derakhshan M, Mosavat A, Soleimanpour S, Rezaee SA. Evaluation of point mutation detection in Mycobacterium tuberculosis with isoniazid resistance using real-time PCR and TaqMan probe assay. Appl Biochem Biotechnol. 2015;175:2447–55.

    Article  CAS  PubMed  Google Scholar 

  563. Kiepiela P, Bishop KS, Smith AN, Roux L, York DF. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa. Tuber Lung Dis. 2000;80:47–56.

    Article  CAS  PubMed  Google Scholar 

  564. Ramaswamy SV, Reich R, Dou SJ, et al. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003;47:1241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  565. Mokrousov I, Narvskaya O, Limeschenko E, Otten T, Vyshnevskiy B. Detection of ethambutol-resistant Mycobacterium tuberculosis strains by multiplex allele-specific PCR assay targeting embB306 mutations. J Clin Microbiol. 2002;40:1617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  566. Miele A, Bandera M, Goldstein BP. Use of primers selective for vancomycin resistance genes to determine van genotype in enterococci and to study gene organization in VanA isolates. Antimicrob Agents Chemother. 1995;39:1772–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  567. Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol. 1995;33:24–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  568. Jayaratne P, Rutherford C. Detection of clinically relevant genotypes of vancomycin-resistant enterococci in nosocomial surveillance specimens by PCR. J Clin Microbiol. 1999;37:2090–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  569. Dutka-Malen S, Leclercq R, Coutant V, Duval J, Courvalin P. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrob Agents Chemother. 1990;34:1875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  570. Modrusan Z, Marlowe C, Wheeler D, Pirseyedi M, Bryan RN. Detection of vancomycin resistant genes vanA and vanB by cycling probe technology. Mol Cell Probes. 1999;13:223–31.

    Article  CAS  PubMed  Google Scholar 

  571. Poulsen RL, Pallesen LV, Frimodt-Moller N, Espersen F. Detection of clinical vancomycin-resistant enterococci in Denmark by multiplex PCR and sandwich hybridization. APMIS. 1999;107:404–12.

    Article  CAS  PubMed  Google Scholar 

  572. Bell JM, Paton JC, Turnidge J. Emergence of vancomycin-resistant enterococci in Australia: phenotypic and genotypic characteristics of isolates. J Clin Microbiol. 1998;36:2187–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  573. Patel R, Uhl JR, Kohner P, Hopkins MK, Cockerill 3rd FR. Multiplex PCR detection of vanA, vanB, vanC-1, and vanC-2/3 genes in enterococci. J Clin Microbiol. 1997;35:703–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  574. Kim TS, Kwon HL, Song SH, et al. Real-time PCR surveillance of vanA for vancomycin-resistant Enterococcus faecium. Mol Med Rep. 2012;6:488–92.

    CAS  PubMed  Google Scholar 

  575. Tripathi A, Shukla SK, Singh A, Prasad KN. A new approach of real time polymerase chain reaction in detection of vancomycin-resistant enterococci and its comparison with other methods. Indian J Med Microbiol. 2013;31:47–52.

    Article  CAS  PubMed  Google Scholar 

  576. Perichon B, Reynolds P, Courvalin P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob Agents Chemother. 1997;41:2016–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  577. Fines M, Perichon B, Reynolds P, Sahm DF, Courvalin P. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob Agents Chemother. 1999;43:2161–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  578. McKessar SJ, Berry AM, Bell JM, Turnidge JD, Paton JC. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob Agents Chemother. 2000;44:3224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  579. Fluit AC, Florijn A, Verhoef J, Milatovic D. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother. 2005;49:1636–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  580. Call DR, Bakko MK, Krug MJ, Roberts MC. Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother. 2003;47:3290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  581. Aminov RI, Chee-Sanford JC, Garrigues N, Mehboob A, Mackie RI. Detection of tetracycline resistance genes by PCR methods. Methods Mol Biol. 2004;268:3–13.

    CAS  PubMed  Google Scholar 

  582. Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes. 2001;15:209–15.

    Article  CAS  PubMed  Google Scholar 

  583. Nishimoto Y, Kobayashi N, Alam MM, Ishino M, Uehara N, Watanabe N. Analysis of the prevalence of tetracycline resistance genes in clinical isolates of Enterococcus faecalis and Enterococcus faecium in a Japanese hospital. Microb Drug Resist. 2005;11:146–53.

    Article  CAS  PubMed  Google Scholar 

  584. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis. 2000;37:127–37.

    Article  CAS  PubMed  Google Scholar 

  585. Olsvik B, Olsen I, Tenover FC. Detection of tet(M) and tet(O) using the polymerase chain reaction in bacteria isolated from patients with periodontal disease. Oral Microbiol Immunol. 1995;10:87–92.

    Article  CAS  PubMed  Google Scholar 

  586. Lawson AJ, Elviss NC, Owen RJ. Real-time PCR detection and frequency of 16S rDNA mutations associated with resistance and reduced susceptibility to tetracycline in Helicobacter pylori from England and Wales. J Antimicrob Chemother. 2005;56:282–6.

    Article  CAS  PubMed  Google Scholar 

  587. Toledo H, Lopez-Solis R. Tetracycline resistance in Chilean clinical isolates of Helicobacter pylori. J Antimicrob Chemother. 2010;65:470–3.

    Article  CAS  PubMed  Google Scholar 

  588. Grape M, Sundstrom L, Kronvall G. Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J Antimicrob Chemother. 2003;52:1022–4.

    Article  CAS  PubMed  Google Scholar 

  589. Chiu CH, Su LH, Chu CH, et al. Detection of multidrug-resistant Salmonella enterica serovar Typhimurium phage types DT102, DT104, and U302 by multiplex PCR. J Clin Microbiol. 2006;44:2354–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  590. Chung HS, Kim K, Hong SS, Hong SG, Lee K, Chong Y. The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole. Ann Lab Med. 2015;35:246–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  591. Blahna MT, Zalewski CA, Reuer J, Kahlmeter G, Foxman B, Marrs CF. The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother. 2006;57:666–72.

    Article  CAS  PubMed  Google Scholar 

  592. Adrian PV, Klugman KP, Amyes SG. Prevalence of trimethoprim resistant dihydrofolate reductase genes identified with oligonucleotide probes in plasmids from isolates of commensal faecal flora. J Antimicrob Chemother. 1995;35:497–508.

    Article  CAS  PubMed  Google Scholar 

  593. Adrian PV, Thomson CJ, Klugman KP, Amyes SG. Prevalence and genetic location of non-transferable trimethoprim resistant dihydrofolate reductase genes in South African commensal faecal isolates. Epidemiol Infect. 1995;115:255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  594. Sundstrom L, Jansson C, Bremer K, Heikkila E, Olsson-Liljequist B, Skold O. A new dhfrVIII trimethoprim-resistance gene, flanked by IS26, whose product is remote from other dihydrofolate reductases in parsimony analysis. Gene. 1995;154:7–14.

    Article  CAS  PubMed  Google Scholar 

  595. Adrian PV, Dup M, Klugman KP, Amyes SG. New trimethoprim-resistant dihydrofolate reductase cassette, dfrXV, inserted in a class 1 integron. Antimicrob Agents Chemother. 1998;42:2221–4.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fonds de partenariat pour un Québec innovant et en santé (FPQIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel G. Bergeron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Huletsky, A., Bergeron, M.G. (2017). Bacterial Genotypic Drug Resistance Assays. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-47266-9_37

Download citation

Publish with us

Policies and ethics