Skip to main content

20 Years of Progress in Video Compression – from MPEG-1 to MPEG-H HEVC. General View on the Path of Video Coding Development

  • Conference paper
  • First Online:
Image Processing and Communications Challenges 8 (IP&C 2016)

Abstract

Compression of moving images has opened unprecedented opportunities of transmission and storage of digital video. Extraordinary performance of today’s video codecs is a result of tens of years of work on the development of methods of data encoding. This paper is an attempt to show this history of development. It highlights the history of individual algorithms of data encoding as well as the evolution of video compression technologies as a whole. With the development of successive technologies also functionalities of codecs were evolving, which make also the topic of the paper. The paper ends the attempt of authors’ forecasting about the future evolution of video compression technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson, N.: Information Theory and Coding. McGraw-Hill, New York (1963)

    Google Scholar 

  2. Ahmed, N., Natarajan, T., Rao, R.K.: Discrete cosine transform. IEEE Trans. Comput. C–23, 90–93 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. DeVore, R., et al.: Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 38(2), 719–746 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Domański, M.: Approximate Video Bitrate Estimation for Television Services, ISO/IEC JTC1/SC29/WG11 MPEG 2015, M36571, Warsaw, Poland, 20–27 June 2015

    Google Scholar 

  6. Duda, J.: Asymmetric numeral systems: entropy coding combining speed of Hyffman coding with compression rate of arithmetic coding. arXiv: 1311.2540

  7. Golomb, S.W.: Run-length encoding. IEEE Trans. Inf. Theory IT–12, 399–401 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proceedings of the I. R. E, pp. 1098–1101, September 1952

    Google Scholar 

  9. ISO/IEC 13818-2 International Standard, “Generic Coding of Moving Pictures, Associated Audio”, Part 2: Video, 2nd edn. (2000)

    Google Scholar 

  10. ISO/IEC 14496-10, International Standard, Generic Coding of Audio-Visual Objects, Part 10: Advanced Video Coding, 6th edn., 2010, take ITU-T Rec. H.264, Edition 5.0 (version 11) (2010)

    Google Scholar 

  11. ISO/IEC 15444-1, International Standard, JPEG: Core coding system, 2nd edn., 2004, also: ITU-T Rec. T.800, 2nd edn. (2002)

    Google Scholar 

  12. ISO/IEC 15444-1 and ITU-T Rec. T.800, Information Technology JPEG 2000 image coding system (2000)

    Google Scholar 

  13. ISO/IEC and ITU-T, High Efficiency Video Coding (HEVC), ISO/IEC 23008-2 (MPEG-H Part 2)/ITU-T Rec. H.265 (2013)

    Google Scholar 

  14. ISO/IEC IS 11172-2 International Standard, Coding of Moving Pictures, Associated Audio for Digital Storage Media at up to about 1.5 Mbps, Part 2: Video (1993)

    Google Scholar 

  15. ISO/IEC JTC1/SC29/WG11 MPEG2004/M110737, Subjective test results for the CfP on Scalable Video Coding Technology, Munich, March 2004

    Google Scholar 

  16. ISO/IEC JTC1/SC29/WG11, N6193, MPEG Call for proposals on scalable video coding technology

    Google Scholar 

  17. ITU-T Rec. H.263, Video Coding for Low Bitrate Communication (2005)

    Google Scholar 

  18. Jaswant, R., Anil, J., Jain, K.: Displacement measurement and its application in interframe image coding. IEEE Trans. Commun. - TCOM 29(12), 1799–1808 (1981)

    Article  Google Scholar 

  19. Ndjiki-Nya, P., Stüber, C., Wiegand, T.: A new generic texture synthesis approach for enhanced H.264/MPEG4-AVC video coding. In: Atzori, L., Giusto, D.D., Leonardi, R., Pereira, F. (eds.) VLBV 2005. LNCS, vol. 3893, pp. 121–128. Springer, Heidelberg (2006). doi:10.1007/11738695_17

    Chapter  Google Scholar 

  20. Ohm, J.-R.: Temporal domain subband video coding with motion compensation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 229–232 (1992)

    Google Scholar 

  21. Ohm, J.-R.: Three-dimensional motion-compensated subband coding. In: Proceedings of International Symposium on Video Communications and Fiber Optic Services, SPIE, vol. 1977, pp. 188–197 (1993)

    Google Scholar 

  22. Ohm, J.-R.: Three-dimensional subband coding with motion compensation. IEEE Trans. Image Process. 3, 559–571 (1994)

    Article  Google Scholar 

  23. Salomon, D., Motta, G.: Handbook of Data Compression. Springer, London (2010)

    Book  MATH  Google Scholar 

  24. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  25. SMPTE Standard for Television: VC-1 Compressed Video Bitstream Format and Decoding Process, ANSI/SMPTE 421M (2006)

    Google Scholar 

  26. SMPTE Standard: VC-2 Video Compression, SMPTE 2042-1:2009 (2009)

    Google Scholar 

  27. SMPTE Standard: VC-3 Picture Compression and Data Stream Format, SMPTE2019-1:2005 (2005)

    Google Scholar 

  28. Teuhola, J.: A compression method for clustered bit-vectors. Inf. Process. Lett. 7, 308–311 (1978)

    Article  MATH  Google Scholar 

  29. U.S. patent 2605361, C. Chapin Cutler.: Differential Quantization of Communication Signals, filed June 29, 1950, issued 29 July 1952

    Google Scholar 

  30. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  31. WebM Project, “VP9 Bitstream & Decoding Process Specification” (v. 0.6), March 2016. http://www.webmproject.org

Download references

Acknowledgment

The research project was supported by The National Centre for Research and Development, Poland. Grant No. LIDER/023/541/L-4/12/NCBR (2013–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Karwowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karwowski, D., Grajek, T., Klimaszewski, K., Stankiewicz, O., Stankowski, J., Wegner, K. (2017). 20 Years of Progress in Video Compression – from MPEG-1 to MPEG-H HEVC. General View on the Path of Video Coding Development. In: Choraś, R. (eds) Image Processing and Communications Challenges 8. IP&C 2016. Advances in Intelligent Systems and Computing, vol 525. Springer, Cham. https://doi.org/10.1007/978-3-319-47274-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47274-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47273-7

  • Online ISBN: 978-3-319-47274-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics