Skip to main content

Resource-Driven Modelling for Managing Model Fidelity

  • Chapter
  • First Online:
Model-Implementation Fidelity in Cyber Physical System Design

Abstract

Model complexity is a major concern affecting the design, analysis and runtime management of computing systems. One way of dealing with model complexity is to compromise on the fidelity of a model’s representation of entities and issues that the model is supposed to represent. This chapter describes a resource-driven modelling approach whereby the fidelity of a model can be managed rationally in order to control model complexity. This approach includes two concrete and related methods targeting two aspects of the problem. Dynamic resource graphs highlight the dependencies between system resources and describe a system’s progression as resource and dependency evolution steps. This forms a theoretical foundation for the tracking of parameters that can be regarded as resources, e.g. power consumption, time, computation units, etc. With this resource-oriented view of a system, a hierarchical modelling method emphasizing cross-layer cuts is established. This method facilitates parameter-proportional modelling to achieve optimal fidelity vs complexity trade-offs in models. Simulation and state space analysis application use cases help to validate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in Proceedings of the Spring Joint Computer Conference, AFIPS’67 (Spring) (ACM, New York, 1967), pp. 483–485

    Google Scholar 

  2. ARM. http://www.arm.com, 2015

  3. G. Balbo, Introduction to generalized stochastic petri nets. Formal Methods for Performance Evaluation. Lecture Notes in Computer Science, vol. 4486 (Springer, Berlin, 2007), pp. 83–131

    Google Scholar 

  4. A. Baz, D. Shang, F. Xia, A. Yakovlev, Self-timed SRAM for energy harvesting systems. J. Low Power Electron. 7 (2), 274–284 (2011)

    Article  Google Scholar 

  5. A. Beyranvand Nejad, A. Molnos, K. Goossens, A unified execution model for multiple computation models of streaming applications on a composable MPSoC. J. Syst. Archit. 59 (10), 1032–1046 (2013)

    Google Scholar 

  6. S. Borkar, Thousand core chips: a technology perspective, in Proceedings of the 44th Annual Design Automation Conference, DAC’07 (ACM, New York, 2007), pp. 746–749

    Google Scholar 

  7. H. Corporaal, Design of transport triggered architectures, in Proceedings on Design Automation of High Performance VLSI Systems (1994), pp. 130–135

    Google Scholar 

  8. A. Das, R.A. Shafik, G.V. Merrett, B.M. Al-Hashimi, A. Kumar, B. Veeravalli, Reinforcement learning-based inter- and intra-application thermal optimization for lifetime improvement of multicore systems, in Proceedings of the 51st Annual Design Automation Conference, DAC’14 (ACM, San Francisco, 2014), pp. 1–6

    Google Scholar 

  9. A.K. Das, R.A. Shafik, G.V. Merrett, B.M. Hashimi, A. Kumar, B. Veeravalli, Workload uncertainty characterization and adaptive frequency scaling for energy minimization of embedded systems, in Proceedings of the Conference on DATE’15, March 2015

    Google Scholar 

  10. A. Ehrenfeucht, G. Rozenberg, Zoom structures and reaction systems yield exploration systems. Int. J. Found. Comput. Sci. 25, 275–306 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling, in Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA’11 (ACM, New York, 2011), pp. 365–376

    Google Scholar 

  12. EZchip. http://www.tilera.com, 2015

  13. P. Greenhalgh, big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7 – Improving Energy Efficiency in High-Performance Mobile Platforms. ARM, 2011. White Paper

    Google Scholar 

  14. N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, Toward dark silicon in servers. IEEE Micro 31 (4), 6–15 (2011)

    Article  Google Scholar 

  15. B. Kumar, E.S. Davidson, Computer system design using a hierarchical approach to performance evaluation. Commun. ACM 23 (9), 511–521 (1980)

    Article  Google Scholar 

  16. Y. Lhuillier, M. Ojail, A. Guerre, J.-M. Philippe, K. Ben Chehida, F. Thabet, C. Andriamisaina, C. Jaber, R. David, HARS: a hardware-assisted runtime software for embedded many-core architectures. ACM Trans. Embed. Comput. Syst. 13 (3s), 102:1–102:25 (2014)

    Google Scholar 

  17. Q.-L. Li, Markov reward processes. Constructive Computation in Stochastic Models with Applications (Springer, Berlin, 2010), pp. 526–573

    Google Scholar 

  18. L.A. Maeda-Nunez, A.K. Das, R.A. Shafik, G.V. Merrett, B. Al-Hashimi, PoGo: an application-specific adaptive energy minimisation approach for embedded systems, in HiPEAC Workshop on Energy Efficiency with Heterogenous Computing (EEHCO). HiPEAC, January 2015

    Google Scholar 

  19. A. Mokhov, Conditional partial order graphs. PhD thesis, University of Newcastle upon Tyne, School of Electrical, Electronic and Computer Engineering, 2009

    Google Scholar 

  20. A. Mokhov, A. Iliasov, D. Sokolov, M. Rykunov, A. Yakovlev, A. Romanovsky, Synthesis of processor instruction sets from high-level ISA specifications. IEEE Trans. Comput. 63 (6), 1552–1566 (2014)

    Article  MathSciNet  Google Scholar 

  21. A. Nouri, M. Bozga, A. Molnos, A. Legay, S. Bensalem, Building faithful high-level models and performance evaluation of manycore embedded systems, in In Proceedings of 12th ACM/IEEE International Conference on Methods and Models for System Design, MEMOCODE, 2014

    Google Scholar 

  22. Odroid XU3. http://www.hardkernel.com/main/products, 2013

  23. M. Petrou, C, Petrou, Image Processing: The Fundamentals (Wiley, Chichester, 2010)

    Book  MATH  Google Scholar 

  24. A. Rafiev, A. Iliasov, A. Romanovsky, A. Mokhov, F. Xia, A. Yakovlev, Studying the interplay of concurrency, performance, energy and reliability with ArchOn – an architecture-open resource-driven cross-layer modelling framework, in Proceedings of International Conference on ACSD, 2014

    Google Scholar 

  25. A. Rafiev, F. Xia, A. Iliasov, R. Gensh, A.M.M. Aalsaud, A. Romanovsky, A. Yakovlev, Order graphs and cross-layer parametric significance-driven modelling, in Proceedings of International Conference on ACSD, 2015

    Google Scholar 

  26. W.H. Sanders, J.F. Meyer, Stochastic activity networks: formal definitions and concepts, in Lectures on Formal Methods and Performance Analysis (Springer, Berlin, 2001), pp. 315–343

    Book  MATH  Google Scholar 

  27. A. Suardi, S. Longo, E.C. Kerrigan, G.A. Constantinides, Robust explicit MPC design under finite precision arithmetic, in Proceedings of IFAC, 2014

    Google Scholar 

  28. B. Wang, Y. Xu, R. Rosales, R. Hasholzner, M. Glaß, J. Teich, End-to-end power estimation for heterogeneous cellular LTE SoCs in early design phases, in 2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS), Sept 2014, pp. 1–8

    Google Scholar 

Download references

Acknowledgements

This work is supported by EPSRC grant EP/K034448/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashur Rafiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rafiev, A. et al. (2017). Resource-Driven Modelling for Managing Model Fidelity. In: Molnos, A., Fabre, C. (eds) Model-Implementation Fidelity in Cyber Physical System Design. Springer, Cham. https://doi.org/10.1007/978-3-319-47307-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47307-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47306-2

  • Online ISBN: 978-3-319-47307-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics