Skip to main content

Motor Lateralization Provides a Foundation for Predicting and Treating Non-paretic Arm Motor Deficits in Stroke

  • Chapter
  • First Online:
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 957))

Abstract

Brain lateralization is a ubiquitous feature of neural organization across the vertebrate spectrum. We have developed a model of motor lateralization that attributes different motor control processes to each cerebral hemisphere. This bilateral hemispheric model of motor control has successfully predicted hemisphere-specific motor control and motor learning deficits in the ipsilesional, or non-paretic, arm of patients with unilateral stroke. We now show across large number and range of stroke patients that these motor performance deficits in the non-paretic arm of stroke patients vary with both the side of the lesion, as well as with the severity of contralesional impairment. This last point can be functionally devastating for patients with severe contralesional paresis because for these individuals, performance of upper extremity activities of daily living depends primarily and often exclusively on ipsilesional arm function. We present a pilot study focused on improving the speed and coordination of ipsilesional arm function in a convenience sample of three stroke patients with severe contralesional impairment. Over a three-week period, patients received a total of nine 1.5 h sessions of training that included intense practice of virtual reality and real-life tasks. Our results indicated substantial improvements in ipsilesional arm movement kinematics, functional performance, and that these improvements carried over to improve functional independence. In addition, the contralesional arm improved in our measure of contralesional impairment, which was likely due to improved participation in activities of daily living. We discuss of our findings for physical rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beebe JA, Lang CE (2009) Relationships and responsiveness of six upper extremity function tests during the first six months of recovery after stroke. J Neurol Phys Ther 33:96–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisazza A, Rogers LJ, Vallortigara G (1998) The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci Biobehav Rev 22:411–426

    Article  CAS  PubMed  Google Scholar 

  • Chestnut C, Haaland KY (2008) Functional significance of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil 89:62–68

    Article  PubMed  Google Scholar 

  • Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M (1996) Performance of the ‘unaffected’ upper extremity of elderly stroke patients. Stroke 27:1564–1570

    Article  CAS  PubMed  Google Scholar 

  • Fisk JD, Goodale MA (1988) The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit. Exp Brain Res 72:425–435

    Article  CAS  PubMed  Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    CAS  PubMed  Google Scholar 

  • Gazzaniga MS (1998) The split brain revisited. Sci Am 279:50–55

    Article  CAS  PubMed  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1993) Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24:889–895

    Article  CAS  PubMed  Google Scholar 

  • Haaland KY (2006) Left hemisphere dominance for movement. Clin Neuropsychol 20:609–622

    Article  PubMed  Google Scholar 

  • Haaland KY, Harrington D (1989a) The role of the hemispheres in closed loop movements. Brain & Cogn 9:158–180

    Article  CAS  Google Scholar 

  • Haaland KY, Harrington DL (1989b) Hemispheric control of the initial and corrective components of aiming movements. Neuropsychologia 27:961–969

    Article  CAS  PubMed  Google Scholar 

  • Haaland KY, Harrington DL (1996) Hemispheric asymmetry of movement. Curr Opin Neurobiol 6:796–800

    Article  CAS  PubMed  Google Scholar 

  • Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313

    Article  PubMed  Google Scholar 

  • Haaland KY, Mutha PK, Rinehart JK, Daniels M, Cushnyr B, Adair JC (2012) Relationship between arm usage and instrumental activities of daily living after unilateral stroke. Arch Phys Med Rehabil 93:1957–1962

    Article  PubMed  Google Scholar 

  • Haaland KY, Prestopnik JL, Knight RT, Lee RR (2004) Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain 127:1145–1158

    Article  PubMed  Google Scholar 

  • Haaland KY, Schaefer SY, Knight RT, Adair J, Magalhaes A, Sadek J, Sainburg RL (2009) Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage. Exp Brain Res 196:195–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Jebsen RH, Griffith ER, Long EW, Fowler R (1971) Function of “normal” hand in stroke patients. Arch Phys Med Rehabil 52:170–174 (passim)

    Google Scholar 

  • Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA (1969) An objective and standardized test of hand function. Arch Phys Med Rehabil 50:311–319

    CAS  PubMed  Google Scholar 

  • Jones RD, Donaldson IM, Parkin PJ (1989) Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 112(Pt 1):113–132

    Article  PubMed  Google Scholar 

  • Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y (1998) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements—a PET study. Eur J Neurosci 10:2254–2260

    Article  CAS  PubMed  Google Scholar 

  • Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, Fukuda H (1993) Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Brain Res 623:33–40

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HG (1978) The motor system and the capacity to execute highly fractionated distal extremity movements. Electroencephalogr Clin Neurophysiol (Suppl): 429–431

    Google Scholar 

  • Kuypers HG (1982) A new look at the organization of the motor system. Prog Brain Res 57:381–403

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Hsu MJ, Sheu CF, Wu TS, Lin RT, Chen CH, Hsieh CL (2009) Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Phys Ther 89:840–850

    Article  PubMed  Google Scholar 

  • MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left & right brain. Sci Am 301:60–67

    Article  PubMed  Google Scholar 

  • Mani S, Mutha PK, Przybyla A, Haaland KY, Good DC, Sainburg RL (2013) Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain 136:1288–1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Mani S, Przybyla A, Good DC, Haaland KY, Sainburg RL (2014) Contralesional arm preference depends on hemisphere of damage and target location in unilateral stroke patients. Neurorehabil Neural Repair 28:584–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutha PK, Haaland KY, Sainburg RL (2012) The effects of brain lateralization on motor control and adaptation. J Mot Behav 44:455–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutha PK, Haaland KY, Sainburg RL (2013) Rethinking motor lateralization: specialized but complementary mechanisms for motor control of each arm. PLoS ONE 8:e58582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2010) Coordination deficits in ideomotor apraxia during visually targeted reaching reflect impaired visuomotor transformations. Neuropsychologia 48:3855–3867

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2011a) Critical neural substrates for correcting unexpected trajectory errors and learning from them. Brain 134:3647–3661

    Article  PubMed  Google Scholar 

  • Mutha PK, Sainburg RL, Haaland KY (2011b) Left parietal regions are critical for adaptive visuomotor control. J Neurosci 31:6972–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutha PK, Stapp LH, Sainburg RL, Haaland KY (2014) Frontal and parietal cortex contributions to action modification. Cortex 57:38–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaki D, Kurtzer I, Scott S (2006) Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat Neurosci 9:3

    Article  Google Scholar 

  • Oujamaa L, Relave I, Froger J, Mottet D, Pelissier JY (2009) Rehabilitation of arm function after stroke. Literature review. Ann Phys Rehabil Med 52:269–293

    Article  CAS  PubMed  Google Scholar 

  • Pandian S, Arya KN, Kumar D (2015) Effect of motor training involving the less-affected side (MTLA) in post-stroke subjects: a pilot randomized controlled trial. Topics in stroke rehabilitation. doi:10.1179/1074935714Z.0000000022

    Google Scholar 

  • Pohl PS, Winstein CJ (1999) Practice effects on the less-affected upper extremity after stroke. Arch Phys Med Rehabil 80:668–675

    Article  CAS  PubMed  Google Scholar 

  • Poole JL, Sadek J, Haaland KY (2009) Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. Arch Phys Med Rehabil 90:1800–1805

    Article  PubMed  Google Scholar 

  • Prestopnik J, Haaland K, Knight R, Lee R (2003a) Hemispheric dominance for open and closed loop movements. Soc Neurosci Abstr 30

    Google Scholar 

  • Prestopnik J, Haaland K, Knight R, Lee R (2003b) Hemispheric dominance in the parietal lobe for open and closed loop movements. J Int Neuropsychol Soc 9:1–2

    Google Scholar 

  • Rapin I, Tourk LM, Costa LD (1966) Evaluation of the Purdue Pegboard as a screening test for brain damage. Dev Med Child Neurol 8:45–54

    Article  CAS  PubMed  Google Scholar 

  • Rose DK, Winstein CJ (2005) The co-ordination of bimanual rapid aiming movements following stroke. Clin Rehabil 19:452–462

    Article  CAS  PubMed  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL (2014) Convergent models of handedness and brain lateralization. Front Psychol 5:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2007) Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain 130:2146–2158

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2009a) Dissociation of initial trajectory and final position errors during visuomotor adaptation following unilateral stroke. Brain Res 1298:78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2009b) Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia 47:2953–2966

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, Mutha PK, Haaland KY, Sainburg RL (2012) Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cereb Cortex 22:1407–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Selles RW, Michielsen ME, Bussmann JB, Stam HJ, Hurkmans HL, Heijnen I, de Groot D, Ribbers GM (2014) Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training. Neurorehabil Neural Repair 28:652–659

    Article  PubMed  Google Scholar 

  • Stevens JA, Stoykov ME (2004) Simulation of bilateral movement training through mirror reflection: a case report demonstrating an occupational therapy technique for hemiparesis. Topics Stroke Rehabil 11:59–66

    Article  Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol 60:325–343

    CAS  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2009) Generalization of visuomotor learning between bilateral and unilateral conditions. J Neurophysiol 102:2790–2799

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetter S, Poole JL, Haaland KY (2005) Functional implications of ipsilesional motor deficits after unilateral stroke. Arch Phys Med Rehabil 86:776–781

    Article  PubMed  Google Scholar 

  • Winstein CJ, Merians AS, Sullivan KJ (1999) Motor learning after unilateral brain damage. Neuropsychologia 37:975–987

    Article  CAS  PubMed  Google Scholar 

  • Winstein CJ, Pohl PS (1995) Effects of unilateral brain damage on the control of goal-directed hand movements. Exp Brain Res 105:163–174

    Article  CAS  PubMed  Google Scholar 

  • Winstein CJ, Pohl PS, Cardinale C, Green A, Scholtz L, Waters CS (1996) Learning a partial-weight-bearing skill: effectiveness of two forms of feedback [published erratum appears in Phys Ther 1997 Mar; 77(3):328]. Phys Ther 76:985–993

    Article  CAS  PubMed  Google Scholar 

  • Wolf SL, Blanton S, Baer H, Breshears J, Butler AJ (2002) Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 8:325–338

    PubMed  PubMed Central  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LA, Jann BB (1989) Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 104:125–132

    Article  CAS  PubMed  Google Scholar 

  • Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL (2005) The EXCITE trial: attributes of the Wolf motor function test in patients with subacute stroke. Neurorehabil Neural Repair 19:194–205

    Article  PubMed  Google Scholar 

  • Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D (2006) Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296:2095–2104

    Article  CAS  PubMed  Google Scholar 

  • Wyke M (1967) Effect of brain lesions on the rapidity of arm movement. Neurology 17:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Sainburg RL (2011) Motor lateralization is characterized by a serial hybrid control scheme. Neuroscience 196:153–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Sainburg RL (2014) Handedness can be explained by a serial hybrid control scheme. Neuroscience 278:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarosh CA, Hoffman DS, Strick PL (2004) Deficits in movements of the wrist ipsilateral to a stroke in hemiparetic subjects. J Neurophysiol 92:3276–3285

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Sainburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Sainburg, R.L., Maenza, C., Winstein, C., Good, D. (2016). Motor Lateralization Provides a Foundation for Predicting and Treating Non-paretic Arm Motor Deficits in Stroke. In: Laczko, J., Latash, M. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 957. Springer, Cham. https://doi.org/10.1007/978-3-319-47313-0_14

Download citation

Publish with us

Policies and ethics