Skip to main content

Attenuating the Agent: Reducing Opioid “Virulence”

  • Chapter
  • First Online:
Opioid Dependence
  • 1186 Accesses

Abstract

One strategy in addressing the opioid epidemic is to decrease or attenuate the “virulence” of the agent, i.e., render opioids less “pathogenic.” Historic approaches to such attenuation have largely focused on altering existing and commercially available drugs by converting them to an extended-release form and equipping them with tamper-resistant and abuse-deterrent properties. While certainly not without merit, these approaches cannot prevent misuse or abuse by excessive consumption and do not alter the fundamental characteristics of the agent (e.g., propensity to cause euphoria, dependence and addiction, respiratory suppression). They can only affect the delivery of the agent. Novel modifications or alternative strategies using the endogenous opioid system, such as peripheral-only agonists, endogenous ligand protease inhibitors (e.g., dual enkephalinase inhibitors), heteromeric ligands with biased agonism, allosteric modifiers, and agents targeting glia, may provide safer analgesics and in effect reduce the population of virulent agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brannon JR, Hadjifrangiskou M. The arsenal of pathogens and antivirulence therapeutic strategies for disarming them. Drug Des Devel Ther. 2016;10:1795–806.

    PubMed  PubMed Central  Google Scholar 

  2. Heras B, Scanlon MJ, Martin JL. Targeting virulence not viability in the search for future antibacterials. Br J Clin Pharmacol. 2015;79:208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blaser MJ. The microbiome revolution. J Clin Invest. 2014;124:4162–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Volkow ND. Prescription opioid and heroin abuse. Presentation to the house committee on energy and commerce subcommittee on oversight and investigations. 2014. Available from: https://www.drugabuse.gov/about-nida/legislative-activities/testimony-to-congress/2015/prescription-opioid-heroin-abuse.e.

  5. Pirofski A, Casadevall A. Q and a what is a pathogen? A question that begs the point. BMC Biol. 2012;10:6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci. 2015;38:217–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark DL, Boutros NN, Mendez MF. The brain and behavior: an introduction to behavioral neuroanatomy. 3rd ed. New York: Cambridge University Press; 2010.

    Book  Google Scholar 

  8. Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wise RA, Gardner EL. Functional anatomy of substance-related disorders. In: D’haenen H, den Boer JA, Willner P, editors. Biological psychiatry. New York: Wiley; 2002. p. 509–22.

    Chapter  Google Scholar 

  10. Corbett D, Wise RA. Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study. Brain Res. 1980;185:1–15.

    Article  CAS  PubMed  Google Scholar 

  11. Wise RA, Bozarth MA. Action of drugs of abuse on brain reward systems: an update with specific attention to opiates. Pharmacol Biochem Behav. 1982;17:239–43.

    Article  CAS  PubMed  Google Scholar 

  12. Bozarth MA, Wise RA. Neural substrates of opiate reinforcement. Prog Neuro-Psychopharmacol Biol Psychiatry. 1983;7(4–6):569–75.

    Article  CAS  Google Scholar 

  13. Gardner EL. Introduction: addiction and brain reward and anti-reward pathways. Adv Psychosom Med. 2011;30:22–60.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schechter MD, Meechan SM. Conditioned place aversion produced by dopamine release inhibition. Eur J Pharmacol. 1994;260:133–7.

    Article  CAS  PubMed  Google Scholar 

  15. Shippenberg TS, Bals-Kubik R, Huber A, Herz A. Neuroanatomical substrates mediating the aversive effects of D-1dopamine receptor antagonists. Psychopharmacology. 1991;103:209–14.

    Article  CAS  PubMed  Google Scholar 

  16. Gruber SA, Silveri MM, Yurgelun-Todd DA. Neuropsychological consequences of opiate use. Neuropsychol Rev. 2007;17:299–315.

    Article  PubMed  Google Scholar 

  17. Le Merrer J, Becker JA, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009;89:1379–412.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ting-A-Kee R, van der Kooy D. The neurobiology of opiate motivation. Cold Spring Harb Perspect Med. 2012;2:a012096.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Britt MD, Wise RA. Ventral tegmental site of opiate reward: antagonism by a hydrophilic opiate receptor blocker. Brain Res. 1983;258:105–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wise RA. Opiate reward: sites and substrates. Neurosci Biobehav Rev. 1989;13:129–33.

    Article  CAS  PubMed  Google Scholar 

  21. Olmstead MC, Franklin KB. The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav Neurosci. 1997;111:1324–34.

    Article  CAS  PubMed  Google Scholar 

  22. McBride WJ, Murphy JM, Ikemoto S. Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res. 1999;101:129–52.

    Article  CAS  PubMed  Google Scholar 

  23. Bozarth MA, Wise RA. Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci. 1981;28:551–5.

    Article  CAS  PubMed  Google Scholar 

  24. Zangen A, Ikemoto S, Zadina JE, Wise RA. Rewarding and psychomotor stimulant effects of endomorphin-1: anteroposterior differences within the ventral tegmental area and lack of effect in nucleus accumbens. J Neurosci. 2002;22:7225–33.

    CAS  PubMed  Google Scholar 

  25. Zhang Y, Landthaler M, Schlussman SD, Yuferov V, Ho A, Tuschl T, et al. Mu opioid receptor knockdown in the substantia nigra/ventral tegmental area by synthetic small interfering RNA blocks the rewarding and locomotor effects of heroin. Neuroscience. 2009;158:474–83.

    Article  CAS  PubMed  Google Scholar 

  26. Gysling K, Wang RY. Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res. 1983;277:119–27.

    Article  CAS  PubMed  Google Scholar 

  27. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    CAS  PubMed  Google Scholar 

  28. Bozarth MA, Wise RA. Heroin reward is dependent on a dopaminergic substrate. Life Sci. 1981;29:1881–6.

    Article  CAS  PubMed  Google Scholar 

  29. Wise RA. Neurobiology of addiction. Curr Opin Neurobiol. 1996;6:243–51.

    Article  CAS  PubMed  Google Scholar 

  30. Ford CP, Mark GP, Williams JT. Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci. 2006;26:2788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Devine DP, Leone P, Wise RA. Mesolimbic dopamine neurotransmission is increased by administration of mu-opioid receptor antagonists. Eur J Pharmacol. 1993;243:55–64.

    Article  CAS  PubMed  Google Scholar 

  32. Shippenberg TS, Bals-Kubik R. Involvement of the mesolimbic dopamine system in mediating the aversive effects of opioid antagonists in the rat. Behav Pharmacol. 1995;6:99–106.

    Article  CAS  PubMed  Google Scholar 

  33. Bechara A, van der Kooy D. A single brain stem substrate mediates the motivational effects of both opiates and food in nondeprived rats but not in deprived rats. Behav Neurosci. 1992;106:351–63.

    Article  CAS  PubMed  Google Scholar 

  34. Olmstead MC, Munn EM, Franklin KB, Wise RA. Effects of pedunculopontine tegmental nucleus lesions on responding for intravenous heroin under different schedules of reinforcement. J Neurosci. 1998;18:5035–44.

    CAS  PubMed  Google Scholar 

  35. Laviolette SR, Gallegos RA, Henriksen SJ, van der Kooy D. Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nat Neurosci. 2004;7:160–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hnasko TS, Sotak BN, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature. 2005;438:854–7.

    Article  CAS  PubMed  Google Scholar 

  37. Nader K, van der Kooy D. Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J Neurosci. 1997;17:383–90.

    CAS  PubMed  Google Scholar 

  38. Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci. 2010;30:7105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gorelova N, Mulholland PJ, Chandler LJ, Seamans JK. The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb Cortex. 2012;22:327–36.

    Article  PubMed  Google Scholar 

  40. Root DH, Mejias-Aponte CA, Zhang S, Wang HL, Hoffman AF, Lupica CR, et al. Single rodent mesohabenular axons release glutamate and GABA. Nat Neurosci. 2014;17:1543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brennan MJ. Update on prescription extended-release opioids and appropriate patient selection. J Multidiscip Healthc. 2013;6:265–80.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Miller M, Barber CW, Leatherman S, Fonda J, Hermos JA, Cho K, et al. Prescription opioid duration of action and the risk of unintentional overdose among patients receiving opioid therapy. JAMA Intern Med. 2015;175:608–15.

    Article  PubMed  Google Scholar 

  43. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Prescription of long-acting opioids and mortality in patients with chronic noncancer pain. JAMA. 2016;315:2415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Busto U, Sellers EM. Pharmacokinetic determinants of drug abuse and dependence. A conceptual perspective. Clin Pharmacokinet. 1986;11:144–53.

    Article  CAS  PubMed  Google Scholar 

  45. Farré M, Camí J. Pharmacokinetic considerations in abuse liability evaluation. Br J Addict. 1991;86:1601–6.

    Article  PubMed  Google Scholar 

  46. Comer SD, Ashworth JB, Sullivan MA, Vosburg SK, Saccone PA, Foltin RW. Relationship between rate of infusion and reinforcing strength of oxycodone in humans. J Opioid Manag. 2009;5:203–12.

    PubMed  Google Scholar 

  47. Butler SF, Fernandez KC, Chang A, Benoit C, Morey LC, Black R, et al. Measuring attractiveness for abuse of prescription opioids. Pain Med. 2010;11:67–80.

    Article  PubMed  Google Scholar 

  48. Allain F, Minogianis EA, Roberts DC, Samaha AN. How fast and how often: the pharmacokinetics of drug use are decisive in addiction. Neurosci Biobehav Rev. 2015;56:166–79.

    Article  PubMed  Google Scholar 

  49. McCarberg BH, Barkin RL. Long-acting opioids for chronic pain: pharmacotherapeutic opportunities to enhance compliance, quality of life, and analgesia. Am J Ther. 2001;8:181–6.

    Article  CAS  PubMed  Google Scholar 

  50. Manchikanti L, Manchukonda R, Pampati V, Damron KS. Evaluation of abuse of prescription and illicit drugs in chronic pain patients receiving short-acting (hydrocodone) or long-acting (methadone) opioids. Pain Physician. 2005;8(3):257–61.

    PubMed  Google Scholar 

  51. Wilsey BL, Fishman S, Li CS, Storment J, Albanese A. Markers of abuse liability of short- vs long acting opioids in chronic pain patients: a randomized cross-over trial. Pharmacol Biochem Behav. 2009;94:98–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morrell A. The oxycontin clan: The $14 billion newcomer to Forbes 2015 list of richest U.S. families. Forbes Magazine, 1 Jul 2015. Available from http://www.forbes.com/sites/alexmorrell/2015/07/01/the-oxycontin-clan-the-14-billion-newcomer-to-forbes-2015-list-of-richest-u-s-families/#3b403fecc0e2.

  53. Coplan PM, Kale H, Sandstrom L, Landau C, Chilcoat HD. Changes in oxycodone and heroin exposures in the National Poison Data System after introduction of extended-release oxycodone with abuse-deterrent characteristics. Pharmacoepidemiol Drug Saf. 2013;22:1274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sessler NE, Downing JM, Kale H, Chilcoat HD, Baumgartner TF, Coplan PM. Reductions in reported deaths following the introduction of extended-release oxycodone (OxyContin) with an abuse-deterrent formulation. Pharmacoepidemiol Drug Saf. 2014;23:1238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), Clinical Medical. Abuse-deterrent opioids—evaluation and labeling guidance for industry. Silver Spring, MD: Office of Communications Division of Drug Information; 2015.

    Google Scholar 

  56. Gudin JA, Nalamachu SR. An overview of prodrug technology and its application for developing abuse-deterrent opioids. Postgrad Med. 2016;128:97–105.

    Article  PubMed  Google Scholar 

  57. Yaksh TL, Wallace MS. Opioids, analgesia, and pain management. In: Brunton L, editor. Goodman and Gilman’s pharmacologic basis of therapeutics. New York: McGraw–Hill; 2011. p. 481–525.

    Google Scholar 

  58. Lasagna L. Benefit-risk ratio of agonist-antagonist analgesics. Drug Alcohol Depend. 1987;20:385–93.

    Article  CAS  PubMed  Google Scholar 

  59. Hanks GW. The clinical usefulness of agonist-antagonistic opioid analgesics in chronic pain. Drug Alcohol Depend. 1987;20:339–46.

    Article  CAS  PubMed  Google Scholar 

  60. Hoskin PJ, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs. 1991;41:326–44.

    Article  CAS  PubMed  Google Scholar 

  61. Ohlsen RI, Pilowsky LS. The place of partial agonism in psychiatry: recent developments. J Psychopharmacol. 2005;19:408–13.

    Article  CAS  PubMed  Google Scholar 

  62. Helm S, Trescot AM, Colson J, Sehgal N, Silverman S. Opioid antagonists, partial agonists, and agonists/antagonists: the role of office-based detoxification. Pain Physician. 2008;11:225–35.

    PubMed  Google Scholar 

  63. Bodkin JA, Zornberg GL, Lukas SE, Cole JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol. 1995;15(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  64. Karp JF, Butters MA, Begley AE, Miller MD, Lenze EJ, Blumberger DM, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry. 2014;75(8):e785–93. doi:10.4088/JCP.13m08725.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bai SA, Xiang Q, Finn A. Evaluation of the pharmacokinetics of single- and multiple-dose buprenorphine Buccal film in healthy volunteers. Clin Ther. 2016;38:358–69.

    Article  CAS  PubMed  Google Scholar 

  66. Yassen A, Olofsen E, van Dorp E, Sarton E, Teppema L, Danhof M, et al. Mechanism-based pharmacokinetic-pharmacodynamic modelling of the reversal of buprenorphine-induced respiratory depression by naloxone: a study in healthy volunteers. Clin Pharmacokinet. 2007;46:965–80.

    Article  CAS  PubMed  Google Scholar 

  67. Walker JS. Anti-inflammatory effects of opioids. Adv Exp Med Biol. 2003;521:148–60.

    CAS  PubMed  Google Scholar 

  68. Sehgal N, Smith HS, Manchikanti L. Peripherally acting opioids and clinical implications for pain control. Pain Physician. 2011;14:249–58.

    PubMed  Google Scholar 

  69. Vadivelu N, Mitra S, Hines RL. Peripheral opioid receptor agonists for analgesia: a comprehensive review. J Opioid Manag. 2011;7:55–68.

    Article  PubMed  Google Scholar 

  70. Zöllner C, Shaqura MA, Bopaiah CP, Mousa S, Stein C, Schafer M. Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons. Mol Pharmacol. 2003;64:202–10.

    Article  PubMed  Google Scholar 

  71. Philippe D, Chakass D, Thuru X, Zerbib P, Tsicopoulos A, Geboes K, et al. Mu opioid receptor expression is increased in inflammatory bowel diseases: implications for homeostatic intestinal inflammation. Gut. 2006;55:815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nunéz S, Lee JS, Zhang Y, Bai G, Ro JY. Role of peripheral mu-opioid receptors in inflammatory orofacial muscle pain. Neuroscience. 2007;146:1346–54.

    Article  PubMed  Google Scholar 

  73. Menéndez L, Lastra A, Meana A, Hidalgo A, Baamonde A. Analgesic effects of loperamide in bone cancer pain in mice. Pharmacol Biochem Behav. 2005;81:114–21.

    Article  PubMed  Google Scholar 

  74. Chung C, Carteret AF, McKelvy AD, Ringkamp M, Yang F, Hartke T, et al. Analgesic properties of loperamide differ following systemic and local administration to rats after spinal nerve injury. Eur J Pain. 2012;16:1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khalefa BI, Shaqura M, Al-Khrasani M, Fürst S, Mousa SA, Schäfer M. Relative contributions of peripheral versus supraspinal or spinal opioid receptors to the antinociception of systemic opioids. Eur J Pain. 2012;16:690–705.

    Article  CAS  PubMed  Google Scholar 

  76. Rivière PJ-M. Peripheral kappa-opioid agonists for visceral pain. Brit J Pharmacol. 2004;141:1331–4.

    Article  Google Scholar 

  77. Albert-Vartanian A, Boyd MR, Hall AL, Morgado SJ, Nguyen E, Nguyen VP, et al. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J Clin Pharm Ther. 2016;41:371–82.

    Article  CAS  PubMed  Google Scholar 

  78. Schramm CL, Honda CN. Co-administration of delta- and mu-opioid receptor agonists promotes peripheral opioid receptor function. Pain. 2010;151:763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Corbett AD, Henderson G, McKnight AT, Paterson SJ. 75 years of opioid research: the exciting but vain quest for the holy grail. Brit J Pharmacol. 2006;147(Suppl 1):S153–62.

    CAS  Google Scholar 

  80. Lin AP, Ko M-C. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability. ACS Chem Neurosci. 2013;4:214–24.

    Article  CAS  PubMed  Google Scholar 

  81. Thanawala V, Kadam VJ, Ghosh R. Enkephalinase inhibitors: potential agents for the management of pain. Curr Drug Targets. 2008;9:887–94.

    Article  CAS  PubMed  Google Scholar 

  82. Poras H, Bonnard E, Dangé E, Fournié-Zaluski MC, Roques BP. New orally active dual enkephalinase inhibitors (DENKIs) for central and peripheral pain treatment. J Med Chem. 2014;57:5748–63.

    Article  CAS  PubMed  Google Scholar 

  83. Bonnard E, Poras H, Nadal X, Maldonado R, Fournié-Zaluski M-C, Roques BP. Long-lasting oral analgesic effects of N-protected aminophosphinic dual enkephalinase inhibitors (DENKIs) in peripherally controlled pain. Pharmacol Res Perspect. 2015;3(2):e00116. doi:10.1002/prp2.116.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zadina JE. Isolation and distribution of endomorphins in the central nervous system. Japan J Pharmacol. 2002;89:203–8.

    Article  CAS  Google Scholar 

  85. Zadina JE, Nilges MR, Morgenweck J, Zhang X, Hackler L, Fasold MB. Endomorphin analog analgesics with reduced abuse liability, respiratory depression, motor impairment, tolerance, and glial activation relative to morphine. Neuropharmacology. 2016;105:215–27.

    Article  CAS  PubMed  Google Scholar 

  86. Zaveri NT. Nociceptin opioid receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J Med Chem. 2016;59(15):7011–28. doi:10.1021/acs.jmedchem.5b01499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Walwyn WM, Miottob KA, Evans CJ. Opioid pharmaceuticals and addiction: the issues, and research directions seeking solutions. Drug Alcohol Depend. 2010;108:156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Thompson GL, Kelly E, Christopoulos A, Canals M. Novel GPCR paradigms at the mu-opioid receptor. Brit J Pharmacol. 2015;172:287–96.

    Article  CAS  Google Scholar 

  89. Burford NT, Traynor JR, Alt A. Positive allosteric modifiers of the mu-opioid receptor: a novel approach for future pain medications. Brit J Pharmacol. 2015;172:277–86.

    Article  CAS  Google Scholar 

  90. Van Rijn RM, Whistler JL, Waldhoer M. Novel pharmaco-types and trafficking-types induced by opioid receptor heteromerization. Curr Opin Pharmacol. 2010;10(1):73–9.

    Article  PubMed  Google Scholar 

  91. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Costantino CM, Gomes I, Stockton SD, Lim MP, Devi LA. Opioid receptor heteromers in analgesia. Expert Rev. Mol Med. 2012;14:e9. doi:10.1017/erm.2012.5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fujita W, Gomes I, Devi LA. Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10. Brit J Pharmacol. 2014;171(18):4155–76.

    Article  CAS  Google Scholar 

  94. Fujita W, Gomes I, Devi LA. Heteromers of μ-δ opioid receptors: new pharmacology and novel therapeutic possibilities. Brit J Pharmacol. 2015;172(2):375–87.

    Article  CAS  Google Scholar 

  95. Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal. 2007;7:98–111.

    Article  PubMed  Google Scholar 

  96. Watkins LR, Hutchinson MR, Rice KC, Maier SF. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci. 2009;30:581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun. 2009;23:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23:240–50.

    Article  CAS  PubMed  Google Scholar 

  99. Eidson LN, Murphy AZ. Blockade of toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci. 2013;33(40):15952–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Han Y, Jiang C, Tang J, Wang C, Wu P, Zhang G, et al. Resveratrol reduces morphine tolerance by inhibiting microglial activation via AMPK signalling. Eur J Pain. 2014;18:1458–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McAnally, H.B. (2018). Attenuating the Agent: Reducing Opioid “Virulence”. In: Opioid Dependence . Springer, Cham. https://doi.org/10.1007/978-3-319-47497-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47497-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47496-0

  • Online ISBN: 978-3-319-47497-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics