Skip to main content

Secure Multiparty Sorting Protocols with Covert Privacy

  • Conference paper
  • First Online:
Secure IT Systems (NordSec 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10014))

Included in the following conference series:

Abstract

We introduce the notion of covert privacy for secret-sharing-based secure multiparty computation (SMC) protocols. We show how covertly or actively private SMC protocols, together with recently introduced verifiable protocols allow the construction of SMC protocols secure against active adversaries. For certain computational problems, the relative overhead of our protocols, when compared to protocols secure against passive adversaries only, approaches zero as the problem size increases.

We analyse the existing adaptations of sorting algorithms to SMC protocols and find that unless they are already using actively secure primitive protocols, none of them are covertly private or verifiable. We propose a covertly private sorting protocol based on radix sort, the relative overhead of which again approaches zero, when compared to the passively secure protocol. Our results reduce the computational effort needed to counteract active adversaries for a significant range of SMC applications, where sorting is used as a subroutine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs board evaluated a tax fraud detection system based on secure multi-party computation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47854-7_14

    Chapter  Google Scholar 

  3. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students and taxes: a privacy-preserving social study using secure computation. In: Proceedings of Privacy Enhancing Technologies (PoPETS) (2016)

    Google Scholar 

  4. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally composable secure multi-party computation primitives. In: CSF 2014, pp. 184–198

    Google Scholar 

  5. Bogdanov, D., Laur, S., Talviste, R.: A practical analysis of oblivious sorting algorithms for secure multi-party computation. In: Bernsmed, K., Fischer-Hübner, S. (eds.) NordSec 2014. LNCS, vol. 8788, pp. 59–74. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11599-3_4

    Google Scholar 

  6. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

  7. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)

    Article  Google Scholar 

  8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145

    Google Scholar 

  10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC 2002, pp. 494–503

    Google Scholar 

  11. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7_19

    Chapter  Google Scholar 

  12. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  13. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  14. Hoogh, S., Schoenmakers, B., Veeningen, M.: Certificate validation in secure computation and its use in verifiable linear programming. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 265–284. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31517-1_14

    Chapter  Google Scholar 

  15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  16. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229

    Google Scholar 

  18. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an efficient sorting algorithm for practical secure multi-party computation. Cryptology ePrint Archive, Report 2014/121 (2014)

    Google Scholar 

  19. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37682-5_15

    Chapter  Google Scholar 

  20. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications. Cryptology ePrint Archive, Report 2011/122 (2011)

    Google Scholar 

  21. Keller, M., Orsini, E., Scholl, P., Mascot: faster malicious arithmetic secure computation with oblivious transfer. Cryptology ePrint Archive, Report 2016/505 (2016)

    Google Scholar 

  22. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: CCS 2013, pp. 549–560

    Google Scholar 

  23. Laud, P.: Parallel oblivious array access for secure multiparty computation and privacy-preserving minimum spanning trees. Proc. Priv. Enhancing Technol. 2015(2), 188–205 (2015)

    Google Scholar 

  24. Laud, P.: Stateful abstractions of secure multiparty computation. In: Laud, P., Kamm, L. (eds.) Applications of Secure Multiparty Computation. Cryptology and Information Security, vol. 13, pp. 26–42. IOS Press, Amsterdam (2015)

    Google Scholar 

  25. Laud, P., Pankova, A.: Verifiable computation in multiparty protocols with honest majority. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 146–161. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12475-9_11

    Google Scholar 

  26. Laud, P., Pankova, A.: Preprocessing-based verification of multiparty protocols with honest majority. Cryptology ePrint Archive, Report 2015/674 (2015)

    Google Scholar 

  27. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24861-0_18

    Chapter  Google Scholar 

  28. Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computation protocols against active adversaries. In: CSF 2015, pp. 75–89

    Google Scholar 

  29. Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for secure two-party sorting, selection, and permuting. In: ASIACCS 2010, pp. 226–237

    Google Scholar 

  30. Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160–164

    Google Scholar 

  31. Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24316-5_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peeter Laud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Laud, P., Pettai, M. (2016). Secure Multiparty Sorting Protocols with Covert Privacy. In: Brumley, B., Röning, J. (eds) Secure IT Systems. NordSec 2016. Lecture Notes in Computer Science(), vol 10014. Springer, Cham. https://doi.org/10.1007/978-3-319-47560-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47560-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47559-2

  • Online ISBN: 978-3-319-47560-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics