Skip to main content

Progress of Controlled Drug Delivery Systems in Topical Ophthalmology: Focus on Nano and Micro Drug Carriers

  • Chapter
  • First Online:
Ocular Drug Delivery: Advances, Challenges and Applications

Abstract

Corneal and conjunctival epithelia, along with the tear film, serve as biological barriers to protect the eye from the entrance of potentially harmful substances. These barriers create constraint effective drug medication of ocular diseases with topical ocular formulations. Designing an effective therapy for ocular diseases, especially for the anterior segment, has been considered a challenging task. Nano-drug carriers giving us an array of hope for ocular drug therapy, owing to its potential to improve the ocular retention, controlled release, trans-corneal permeation and thus intra-ocular drug availability. Nanotechnology-based formulation design is important in ocular pharmaceuticals yet knowledge of anatomy and physiology of eyes are critical along with the understanding of nanoparticles design. Here, we discussed the ocular transport of topically applied drug, different barriers in its path and how the nanoparticles as drug carriers can improve the drug delivery to the eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelkader H, Ismail S, Kamal A, Alany RG (2011) Design and evaluation of controlled release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100:1833–1846

    CAS  PubMed  Google Scholar 

  • Abrishami M, Zarei-Ganavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh Nikouei B (2009) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal adminis-tration. Retina 29:699–703

    PubMed  Google Scholar 

  • Abuzaid SS, El-Ghamry HA, Hammad M (2003) Liposomes as ocular drug delivery system for atenolol. Egypt J Pharm Sci 44:227–245

    CAS  Google Scholar 

  • Addo RT, Siddig A, Patel NJ, Siwale R, Akande J, Uddin AU, D’Souza MJ (2010) Formulation, characterization, and testing of tetracaine hydrochloride-loaded albumin-chitosan microparticles for ocular drug delivery. J Microencapsul 27(2):95–104

    CAS  PubMed  Google Scholar 

  • Addo RT, Yeboah KG, Siwale RC, Siddig A, Jones A, Ubale RV, Akande J, Nettey H, Patel NJ, Addo E, D’Souza MJ (2015) Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. J Pharm Sci 104(5):1677–1690

    CAS  PubMed  Google Scholar 

  • Aggarwal D, Kaur IP (2005) Improved pharmacodynamics of timolol maleate from mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm 16:155–159

    Google Scholar 

  • Aggarwal D, Pal D, Mitra AK, Kaur IP (2007) Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by micro dialysis sampling of aqueous humor. Int J Pharm 29:21–26

    Google Scholar 

  • Agnihotri SM, Vavia PR (2009) Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomed Nanotech Boil Med 5:90–95

    CAS  Google Scholar 

  • Ahmed I, Patton TF (1985) Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci 26(4):584–587

    Google Scholar 

  • Ahmed I, Patton TF (1987) Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm 38:9–21

    CAS  Google Scholar 

  • Ahmed S Guinedi, Nahed DM, Samar M, Rania MH (2005) Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm 306:71–82

    Google Scholar 

  • Akhter S, Talegaonkar S, Khan ZI, Jain GK, Khar RK, Ahmad FJ (2011) Assessment of ocular pharmacokinetics and safety of ganciclovir loaded nanoformulation. Biomed Nanotechnol 7:144–145

    CAS  Google Scholar 

  • Aksungur P, Demirbilek M, Denkbas EB, Vandervoort J, Ludwig A, Unlu N (2011) Development & characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake and kinetic studies. J Control Rel 151:286–294

    CAS  Google Scholar 

  • Ameeduzzafar Ali J, Bhatnagar A, Kumar N, Ali A (2014) Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. Int J Biol Macromol 65:479–491

    CAS  PubMed  Google Scholar 

  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA (2009) Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 10(3):808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo J, Gonzalez E, Egea MA, Garcia ML, Souto EB (2009) Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine 5:394–401

    CAS  PubMed  Google Scholar 

  • Arunothayanun P, Bernard MS, Craig DQ, Uchegbu IF, Florence AT (2000) The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from hexadecyl diglycerol ether. Int J Pharm 201:7–14

    CAS  PubMed  Google Scholar 

  • Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El dally M (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31(8):1040-1049

    CAS  PubMed  Google Scholar 

  • Bai S, Thomas C, Rawat A, Ahsan F (2006) Recent progress in dendrimer-based nanocarriers. Crit Rev Ther Drug Carrier Syst 23:437–495

    CAS  PubMed  Google Scholar 

  • Balakrishnan P, Shanmugam S, Lee WS, Lee WM (2009) Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm 377:1–8

    CAS  PubMed  Google Scholar 

  • Bangham D, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  PubMed  Google Scholar 

  • Barbault-Foucher S, Gref R, Russo P, Guechot J, Bochot A (2002) Design of poly--caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83(3):365–375

    CAS  PubMed  Google Scholar 

  • Başaran, E, Demirel, M, Sırmagül, B, Yazan, Y (2011) Polymeric cyclosporine-A nanoparticles for ocular application. J Biomed Nanotechnol 7(5):714–723

    PubMed  Google Scholar 

  • Başaran E, Yenilmez E, Berkman MS, Büyükköroğlu G, Yazan Y (2014) Chitosan nanoparticles for ocular delivery of cyclosporine A. J Microencapsul 31(1):49–57

    PubMed  Google Scholar 

  • Basha M, Hosam , El-Alim A, Shamma RN, Awad GEA (2013) Design and optimization of surfactant based nanovesicles for ocular delivery of clotrimazole

    Google Scholar 

  • Baspinar Y, Bertelmann E, Pleyer U, Buech G, Siebenbrodt I, Borchert HH (2008) Corneal permeation studies of everolimus microemulsion. J Ocul Pharmacol Ther 24(4):399–402

    CAS  PubMed  Google Scholar 

  • Biswal S, Murthy PN, Sahu J, Sahoo P, Amir F (2008) Vesicles of non-ionic surfactants (niosomes) and drug delivery potential. Int J Pharm Sci Nanotechnol 1:1–8

    CAS  Google Scholar 

  • Bochot A, Fattal E, Grossiord JL, Puisieux F, Couvreur P (1998a) Characterization of a new drug delivery system based on dispersion of liposomes in a thermosensitive gel. Int J Pharm 162:119–127

    CAS  Google Scholar 

  • Bochot A, Gulik FA, Couarraze G, Couvreur P (1998b) Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharm Res 15:1364–1369

    CAS  PubMed  Google Scholar 

  • Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems: recent advances. Prog Retin Eye Res 17:33–58

    CAS  PubMed  Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    CAS  Google Scholar 

  • Carafa M, Santucci E, Lucania G (2002) Lidocaine loaded non ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm 231:21–32

    CAS  PubMed  Google Scholar 

  • Carol L, Keita AV (2010) Translocation of Crohn’s disease Escherichia coli across M cells: contrasting effects of soluble plant fibers and emulsifiers. Gut 59:1331–1339

    Google Scholar 

  • Chen Y, Lu Y, Zhong Y, Wang Q, Wu W, Gao S (2012) Ocular delivery of cyclosporine A based on glyceryl monooleate/poloxamer 407 liquid crystallinenanoparticles: preparation, characterization, in vitro corneal penetration and ocular irritation. J Drug Target 20(10):856–863

    CAS  PubMed  Google Scholar 

  • Chetoni P, Rossi S, Burgalassi S, Monti D, Mariotti S, Saettone MF (2004) Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. J Ocul Pharmacol Ther 20:169–177

    CAS  PubMed  Google Scholar 

  • Cruysberg LP, Nuijts RM, Geroski DH, Koole LH, Hendrikse F, Edelhauser HF (2002) In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J Ocul Pharmacol Ther 18:559–569

    CAS  PubMed  Google Scholar 

  • Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W (2013) Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomed 8:1921–1933

    Google Scholar 

  • Danion A, Arsenault I, Vermette P (2007) Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacine. J Pharm Sci 96:2350–2363

    CAS  PubMed  Google Scholar 

  • De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20:73–81

    PubMed  Google Scholar 

  • De Campos AM, Diebold Y, Carvaiho ELS, Sanchez A, Alonso MJ (2004) Chitosan nanoparticles as new ocular drug delivery system: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21:803–810

    PubMed  Google Scholar 

  • Dhubhghaill SN, Humphries MM, Kenna PF (2012) Further development of barrier modulation as a technique for systemic ocular drug delivery. Adv Exp Med Biol 723:155–159

    PubMed  Google Scholar 

  • Ding S (1998) Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1:328–335

    CAS  Google Scholar 

  • Ding X, Alani WG, Robinson JR (2005) Extended-release and targeted drug delivery systems. In: Troy DB (ed) Remington: the science and practice of pharmacy. Lippincott Williams and Wilkins, Philadelphia, PA, USA

    Google Scholar 

  • Djekic L, Ibric S, Primorac M (2008) The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems. Int J Pharm 361:41–46

    CAS  PubMed  Google Scholar 

  • Du Toit LC, Govender T, Carmichael T, Kumar P, Choonara YE, Pillay V (2013) Design of an anti-inflammatory composite nanosystem and evaluation of its potential for ocular drug delivery. J Pharm Sci 102(8):2780–2805

    PubMed  Google Scholar 

  • Duchfine D, Touchard F, Peppas NA (1988) Pharmaceutical and medical aspects of bioadhesive systems of drug administration. Drug Dev Ind Pharm 14:283–318

    Google Scholar 

  • Elbayoumi TA, Torchilin VP (2010) Current trends in liposome research. Methods Mol Biol 605:1–27

    CAS  PubMed  Google Scholar 

  • Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of pre-corneal retention. Int J Pharm 180:185–193

    CAS  PubMed  Google Scholar 

  • Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benitas S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    CAS  Google Scholar 

  • Fialho SL (2004) New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol 32:626–632

    PubMed  Google Scholar 

  • Fischbarg J (2006) The corneal endothelium. In: Fischbarg J (ed) The Biology of Eye. Academic Press, New York, NY, USA, pp 113–125

    Google Scholar 

  • Fitzgerald P, Wilson C (1994) Polymeric systems for ophthalmic drug delivery. In: Severian D (ed) Polymeric systems for ophthalmic drug delivery. Marcel Dekker, New York. 373–398

    Google Scholar 

  • Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK (2009) Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol 61:989–1003

    CAS  PubMed  Google Scholar 

  • Garty N, Lusky M (1994) Pilocarpine in submicron emulsion formulation for treatment of ocular hypertension: a phase II clinical trial. Invest Ophthalmol Vis Sci 35:2175–2185

    Google Scholar 

  • Gasco MR, Gallarate M, Trotta M, Bauchiero L, Gremmo E and Chiappero O (1989) Microemulsions as topical delivery vehicles: Ocular administration of timolol. J Pharm Biomed Analysis 7(4):433–439

    CAS  PubMed  Google Scholar 

  • Gausas RE, Gonnering RS, Lemke BN, Dortzbach RK, Sherman DD (1999) Identification of human orbital lymphatics. Ophthal Plast Reconstr Surg 15:252–259

    CAS  PubMed  Google Scholar 

  • Gipson IK, Argueso P (2003) Role of mucin in the function of the corneal and conjunctival epithelia. Int Rev Cytol 231:1–49

    CAS  PubMed  Google Scholar 

  • Govender S, Pillay V, Chetty DJ, Essack SY, Dangor CM, Govender T (2005) Optimization and characterization of bioadhesive controlled release tetracycline microspheres. Int J Pharm 306:24–40

    CAS  PubMed  Google Scholar 

  • Greaves JL, Wilson CG, Birmingham AT (1993) Assessment of the precorneal residence of an ophthalmic ointment in healthy subjects. Br J Clin Pharmacol 35:188–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guinedi AS, Mortada ND, Mansour S, Hathout RM (2005) Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm 306:71–82

    CAS  PubMed  Google Scholar 

  • Gupta S, Moulik SP (2008) Biocompatible Microemulsions and their prospective uses in drug delivery. J Pharm Sci 97:22–45

    CAS  PubMed  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed Nanotech Biol Med 6:324–333

    CAS  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2011) Biodegradable levofloxacine nanoparticles for sustained ocular drug delivery. J Drug Target 19(6):409–417

    CAS  PubMed  Google Scholar 

  • Hanrahan F, Campbell M, Nguyen AT, Suzuki M, Kiang AS, Tam LC, Gobbo OL, Dhubhghaill SN, Humphries MM, Kenna PF (2012) Further development of barrier modulation as a technique for systemic ocular drug delivery. Adv Exp Med Biol 723:155–159

    CAS  PubMed  Google Scholar 

  • Hait SK and Moulik SP (2002) Gemini surfactants: A distinct class of self-assembling molecules. Curr Sci 82:1101–1111

    Google Scholar 

  • Hamdy A, Sayed I, Amal K, Raid GA (2011) Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100(5):1833–1846

    Google Scholar 

  • Hathout RM, Mansour S, Mortada ND (2007) Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS Pharm Sci Tech 8:1–12

    Google Scholar 

  • Henriksen I, Green KL, Smart JD, Smistad G, Karlsen J (1996) Bioadhesion of hydrated chitosans: an in vitro and in vivo study. Int J Pharm 145:231–240

    CAS  Google Scholar 

  • Her Y, Lim JW, Han SH (2013) Dry eye and tear film functions in patients with psoriasis. Jpn J Ophthalmol 57(4):341–346

    PubMed  Google Scholar 

  • Higashiyama M, Tajika T, Inada K, Ohtori A (2006) Improvement of the ocular bioavailability of carteolol by ion pair. J Ocular Pharmacol Ther 22:333–339

    CAS  Google Scholar 

  • Hill JM, O’Callaghan RJ, Hobden JA, Kaufman E (1993) Corneal collagen shields for ocular drug delivery. Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 261–275

    Google Scholar 

  • Hirano S, Seino H, Akiyama I, Nonaka I (1990) Chitosan: a biocompatible material for oral and intravenous administration. In: Gebelein CG, Dunn RL (eds) Progress in biomedical polymers. Plenum Press, New York, pp 283–289

    Google Scholar 

  • Hitzenberger CK, Baumgartner A, Drexler W et al (1994) Interferometric measurement of corneal thickness with micrometer precision. Am J Ophthalmol 118:468–476

    CAS  PubMed  Google Scholar 

  • Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N (2013) Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomed 8:495–503

    Google Scholar 

  • Hosoya K, Vincent HL, Kim LKJ (2005) Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Biopharm 60:227–240

    CAS  Google Scholar 

  • Ikeda I (2003) Synthesis of gemini and elated substances. In: Zana R, Xia J (eds) Gemini surfactants synthesis, interfacial and solution phase-behavior, and applications, vol 1. Marcel Dekker, New York, pp 26–30

    Google Scholar 

  • Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305

    CAS  PubMed  Google Scholar 

  • Jain NK, Gupta U (2008) Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin Drug Discov 4:1035–1051

    CAS  Google Scholar 

  • Jain K, Kumar RS, Sood S, Dhyanandhan G (2013) Betaxolol hydrochloride loaded chitosan nanoparticles for ocular delivery and their anti-glaucoma efficacy. Curr Drug Deliv 10:493–499

    CAS  PubMed  Google Scholar 

  • Jain S, Thompson JR, Foot B, Tatham A, Eke T (2014) Severe intraocular pressure rise following intravitreal triamcinolone: a national survey to estimate incidence and describe case profiles. Eye (Lond) 28(4):399–401. doi:10.1038/eye.2013.306

    Article  CAS  Google Scholar 

  • Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K (2010) Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B Biointerfaces 81:498–502

    CAS  PubMed  Google Scholar 

  • Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Ann Rev Anal Chem 1:801–832

    CAS  Google Scholar 

  • Jóhannesson G, Moya-Ortega MD, Asgrímsdottir GM, Agnarsson BA, Lund SH, Loftsson T, Stefansson E (2014) Dorzolamide cyclodextrin nanoparticle suspension eye drops and Trusopt in rabbit. J Ocul Pharmacol Ther 30(6):464–467

    PubMed  Google Scholar 

  • Jtirvinen K, Tomi J, Arto Urttia S (1995) Ocular absorption following topical delivery. Adv Drug Deliv Rev 16:3–19

    Google Scholar 

  • Jwala J, Boddu SHS, Shah S, Sirimulla S, Pal D, Mitra AK (2011) Ocular sustained release nanoparticles containing stereoisomeric dipeptide prodrugs of acyclovir. J Ocul Pharmacol Ther 27(2):163–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalam MA (2016) The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int J Biol Macromol 6(89):559–568

    Google Scholar 

  • Kambhampati SP, Kannan RM (2013) Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 29(2):151–165

    CAS  PubMed  Google Scholar 

  • Kapadia R, Khambete H, Katara R (2009) Novel approach for ocular delivery of acyclovir via niosomes entrapped in situ hydrogel system. J Pharm Res 2:745–751

    CAS  Google Scholar 

  • Karim KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (2012) Niosome: a future of targeted drug delivery systems. J Adv Pharm Tech Res 1:374–380

    Google Scholar 

  • Katiyar S, Pandit J, Mondal RS, Mishra AK, Chuttani K, Aqil M, Ali A, Sultana Y (2014) In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym 15(102):117–124

    Google Scholar 

  • Kaur IP, Kanwar M (2002) Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28:473–493

    CAS  PubMed  Google Scholar 

  • Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14

    CAS  PubMed  Google Scholar 

  • Kaur IP, Aggarwal D, Singh H, Kakkar S (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–1472

    CAS  PubMed  Google Scholar 

  • Kaur H, Ahuja M, Kumar S, Dilbaghi N (2012) Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. Int J Biol Macromol 50:833–839

    CAS  PubMed  Google Scholar 

  • Kesavan K, Kant S, Singh PN, Pandit JK (2013) Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: in vitro and in vivo evaluation. Curr Eye Res 38:342–352

    CAS  PubMed  Google Scholar 

  • Khan A, Sharma PK, Visht S, Malviya R (2011) Niosomes as colloidal drug delivery system: a review. J Chronotherapy Drug Deliv 2:15–21

    Google Scholar 

  • Khazaeli P, Pardakhty A, Shoorabi H (2007) Caffeine-loaded niosomes: characterization and in vitro release studies. Drug Deliv 14:447–452

    CAS  PubMed  Google Scholar 

  • King-Smith PE, Fink BA, Fogt N et al (2000) The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Visual Sci 41:3348–3359

    CAS  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    CAS  PubMed  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf A 72(1):1–18

    Google Scholar 

  • Kumbhar D, Wavikar P, Vavia P (2013) Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamic activity. AAPS Pharm Sci Tech 14(3):1072–1082

    CAS  Google Scholar 

  • Lang JC (1995) Ocular drug delivery conventional ocular formulations. Advanced Drug Delivery Reviews 16:39–43

    CAS  Google Scholar 

  • Lawrence MJ, Chauhan S, Lawrence SM, Barlow DJ (1996) The formation, characterization and stability of non-ionic surfactant vesicles. STP Pharm Sci 1:49–60

    Google Scholar 

  • Lee SJ, He W, Robinson SB, Robinson MR, Csaky KG, Kim H (2010) Evaluation of clearance mechanisms with trans-scleral drug delivery. Invest Ophthalmol Vis Sci 51:5205–5212

    PubMed  Google Scholar 

  • Li J, Wu L, Wu W, Wang B, Wang Z, Xin H, Xu Q (2013) A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm 15 455(1–2):75–84

    CAS  Google Scholar 

  • Lin J, Wu H, Wang Y, Lin J, Chen Q, Zhu X (2016) Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Deliv 23(4):1144–1151

    CAS  PubMed  Google Scholar 

  • Liu R, Wang S, Fang S, Wang J, Chen J, Huang X, He X, Liu C (2016) Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine: development, characterization, and in vitro and in vivo. Nanoscale Res Lett 11(1):254. doi:10.1186/s11671-016-1471-0 Cited 2016 May 17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Delivery Rev 57:1595–1639

    CAS  Google Scholar 

  • Ludwig A, Ooteghem VM (1992) Influence of, viscoslysers on the residence of ophthalmic solutions evaluated by slip lamp fluorophotometry. STP Pharm Sci 2(1):81–87

    CAS  Google Scholar 

  • Lv FF, Zheng LQ, Tung CH (2005) Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. Int J Pharm 301(1–2):237–246

    CAS  PubMed  Google Scholar 

  • Ma SW, Gan Y, Gan L, Zhu CL, Zhu JB (2008) Preparation and in vitro corneal retention behaviour of novel cationic microemulsion/in situ gel system. Yao Xue Xue Bao 43:749–755

    Google Scholar 

  • Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR (2012) Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci 15:46–54

    Google Scholar 

  • Mainardes RM, Urban MCC, Cinto PO (2005) Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets 6:363–371

    CAS  PubMed  Google Scholar 

  • Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa N (2003) Characterization of vesicles prepared with various nonionic surfactants mixed with cholesterol. Colloids Surf B Biointerfaces 30:129–138

    CAS  Google Scholar 

  • Marfurt CF, Kingsley RE, Echtenkamp SE (1989) Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Invest Ophthalmol Vis Sci 30:461–472

    CAS  PubMed  Google Scholar 

  • Maurice DM, Mishima S (1984) Pharmacology of the eye. Handb Exp Pharmacol 69:109–116

    Google Scholar 

  • McDonald TO, Shadduck JA (1977) Eye irritation. Adv Mod Toxicol 4:139–191

    Google Scholar 

  • Meisner D, Mezei M (1995) Liposome ocular delivery systems. Adv Drug Deliv Rev 16:75–93

    CAS  Google Scholar 

  • Meng J, Sturgis TF, Youan BC (2011) Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 44:57–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594

    CAS  PubMed  Google Scholar 

  • Meseguer G, Buri P, Plazonnet B, Rozier A, Gurny R (1996) Gamma scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers. J Ocul Pharmacol Ther 12:481–488

    CAS  PubMed  Google Scholar 

  • Miao H, Wu B, Tao Y, Li X. (2013). Diffusion of macromolecules through sclera. Acta Ophthamologica 91(1):e1–e6

    PubMed  Google Scholar 

  • Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40(1):173–190

    CAS  PubMed  Google Scholar 

  • Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 14:205–2018

    Google Scholar 

  • Mohammed N, Rejinold NS, Mangalathillam S, Biswas R, Nair SV, Jayakumar R (2013) Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J Biomed Nanotechnol 9(9):1521–1531

    CAS  PubMed  Google Scholar 

  • Monem AS, Ali FM, Ismail MW (2000) Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharmaceutics 198:29–38

    CAS  PubMed  Google Scholar 

  • Montes-Mico R, Cervino A, Ferrer-Blasco T, Garcia-Lazaro S, Madrid-Costa D (2010) The tear film and the optical quality of the eye. Ocul-Surf 8:185–192

    PubMed  Google Scholar 

  • Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK (2008) Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular Delivery: formulation, optimization and in-vitro characterization. Eur J Pharm Biopharm 68:513–525

    CAS  PubMed  Google Scholar 

  • Mujoriya RZ, Bodla RB (2011) Niosomes—challenge in preparation for pharmaceutical scientist. Int J App Pharm 3:11–15

    CAS  Google Scholar 

  • Muller LJ, Marfurt CF, Kruse F, Tervo TM (2003) Corneal nerves: structure, contents and function. Exp Eye Res 76:521–542

    CAS  PubMed  Google Scholar 

  • Myles ME, Neumann DM, Hill JM (2005) Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Del Rev 57:2063–2079

    CAS  Google Scholar 

  • Nagarwal RC, Kumar R, Pandit JK (2012) Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 47(4):678–685

    CAS  PubMed  Google Scholar 

  • Nagyova B, Tiffany JM (1999) Components responsible for the surface tension of human tears. Curr Eye Res 19:4–11

    CAS  PubMed  Google Scholar 

  • Newell FW (1993) Ophthalmology: principles and concepts. 7th edn. Mosby Year Book, St. Louis

    Google Scholar 

  • Newkome GR, Shreiner CD (2008) Amidoamine, polypropylenimine, and related dendrimers and dendrons possessing different 1 → 2 branching motifs: An overview of the divergent procedures. Polymer 49:1–173

    CAS  Google Scholar 

  • Norley SG, Huang L, Rouse BT (1986) Targeting of drug loaded immunoliposomes to herpes simplex virus infected corneal cells: an effective means of inhibiting virus replication in vitro. J Immunol 136(2):681–685

    Google Scholar 

  • Omidi, Y., Barar, J., Hamzeiy, H., 2012. Nanomedicines Impacts in Ocular Delivery and Targeting. Nanotechnol Health Care, 43–106

    Google Scholar 

  • Pandit JC, Nagyova B, Bron AJ, Tiffany JM (1999) Physical properties of stimulated and unstimulated tears. Exp Eye Res 68:247–253

    CAS  PubMed  Google Scholar 

  • Pardakhti A, Moshefi MH, Moteshafi H (2007) Preparation of niosomes containing chloramphenicol sodium succinate and evaluation of their physicochemical and antimicrobial properties. Pharm Sci Spr 1:11–21

    Google Scholar 

  • Parra A, Mallandrich M, Clares B, Egea MA, Espina M, García ML, Calpena AC (2015) Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen:Ocular anti-inflammatory applications. Colloids Surf B Biointerfaces 136:935–943

    CAS  PubMed  Google Scholar 

  • Pathak MK, Chhabra G, Pathak K (2013) Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev Ind Pharm 39:780–790

    CAS  PubMed  Google Scholar 

  • Pescina S, Santi P, Ferrari G, Nicoli S (2011) Trans-scleral delivery of macromolecules. Ther Deliv 2:1331–1349

    CAS  PubMed  Google Scholar 

  • Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G (2002) Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 23:3247–3255

    CAS  PubMed  Google Scholar 

  • Ponchel G, Touchard F, Duchfine D, Peppas NA (1987) Bioadhesive analysis of controlled-release systems. I. Fracture and interpenetration analysis in poly (acrylic acid)-containing systems. J Control Release 5:129–141

    CAS  Google Scholar 

  • Qi HP, Gao XC, Zhang LQ, Wei SQ, Bi S, Yang ZC, Cui H (2013) In vitro evaluation of enhancing effect of borneol on transcorneal permeation of compounds with different hydrophilicities and molecular sizes. Eur J Pharmacol 705:20–25

    CAS  PubMed  Google Scholar 

  • Rathore KS, Nema PK (2009) An insight into ophthalmic drug delivery system. Int J Pharm Sci Drug Res 1:1–5

    CAS  Google Scholar 

  • Raviola G (1983) Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthalmol Vis Sci 24:725–736

    CAS  PubMed  Google Scholar 

  • Raymzond CR, Paul JS, Sian CO (2006) Polyoxyethylenealkyl ethers. Handbook of pharmaceutical excipients, 5th edn. Pharmaceutical Press, London, pp 564–571

    Google Scholar 

  • Robinson JC (1993) Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 29–57

    Google Scholar 

  • Rojanasakul Y, Wang LY, Bhat M (1992) The transport barrier of epithelia: a comparative study on membrane permeability and charge selectivity in the rabbit. Pharm Res 9:1029–1934

    CAS  PubMed  Google Scholar 

  • Rooijen VN, Nieuwmegen VR (1980) Liposomes in immunology: multilamellar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Commun 9:243–256

    PubMed  Google Scholar 

  • Round A, Berry M, McMaster T, Stoll S, Gowers D, Corfield A, Miles M (2002) Heterogeneity and persistence length in human ocular mucins. Biophys J 83:1661–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabzevari A, Adibkia K, Hashemi H, De-Geest BG, Mohsenzadeh N, Atyabi F, Ghahremani MH, Khoshayand MR, Dinarvand R (2013) Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide. Invest Ophthalmol Vis Sci 54:5520–5526

    CAS  PubMed  Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    CAS  PubMed  Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    CAS  PubMed  Google Scholar 

  • Salama AH, Mahmoud AA, Kamel R (2015) A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations. AAPS Pharm Sci Tech, 1–14

    Google Scholar 

  • Samad A, Alam MI, Saxena K (2009) Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr Pharm 15(25):2958–2969

    CAS  Google Scholar 

  • Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H (2013) Retinal drug delivery using eyedrop preparations of poly-L-lysine-modifiedliposomes. Eur J Biopharm 83:364–369

    CAS  Google Scholar 

  • Schipper NG, Olsson S, Hoogstraate JA, deBoer AG, Varum KM, Artursson P (1997) Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res 14:923–929

    CAS  PubMed  Google Scholar 

  • Schoenwald RD (1990) Ocular drug delivery: pharmacokinetic considerations. Clin Pharmacokinet 18:255–269

    CAS  PubMed  Google Scholar 

  • Schoenwald RD, Ward RL, Desantis LM, Roehrs RE (1978) Influence of high viscosity vehicles on miotic effect of pilocarpine. J Pharm Sci 67:1280–1283

    CAS  PubMed  Google Scholar 

  • Schoenwald RD, Vidvauns S, Wurster DE, Barfknecht CF (1998) The role of tear proteins in tear film stability in the dry eye patient and in the rabbit. In: Sullivan DA, Dartt DA and Menerary MA (eds) Lacrimal gland, Tear Film and Dry Eye Sydromes. 2. Plenum Press: New York, pp 391–400

    Google Scholar 

  • Sechoy O, Tissiiee G, Sebastian C, Maurin F, Driot JY, Trinquand C (2000) A new long acting ophthalmic formulation of Carteolol containing alginic acid. Int J Pharm 207:109–116

    CAS  PubMed  Google Scholar 

  • Shahiwala A, Misra A (2002) Studies in topical application of niosomally entrapped nimesulide. J Pharm Sci 5:220–225

    CAS  Google Scholar 

  • Shan W, Liu H, Shi J, Yang L, Hu N (2008) Self-assembly of electroactive layer-by-layer films of heme proteins with anionic surfactant dihexadecyl phosphate. Biophys Chem 134:101–109

    CAS  PubMed  Google Scholar 

  • Shen Y, Tu J (2007) Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS Pharm Sci Tech 9:371–377

    Google Scholar 

  • Singh D (2003) Conjunctival lymphatic system. J Cataract Refract Surg 29:632–633

    PubMed  Google Scholar 

  • Singh V, Ahmad R, Heming T (2011) The challenges of ophthalmic drug delivery: a review. Int J Drug Discov 3:56–62

    Google Scholar 

  • Slovin EM, Robinson JR (1993) Bioadhesive in ocular drug delivery. In: Edman P (ed) Biopharmaceutics of ocular drug delivery. CRC Press, Boca Raton, Florida, pp 145–157

    Google Scholar 

  • Soukharev AR, Wojciechowska J (2005) Microemulsions as potential ocular drug delivery systems: phase diagrams and physical depending on ingredients. Acta Pol Pharm Drug Res 62:465–471

    Google Scholar 

  • Stahl U, Willcox M, Stapleton F (2012) Osmolality and tear film dynamics. Clin Exp Optom 95(1):3–11

    PubMed  Google Scholar 

  • Sugar HS, Riazi A, Schaffner R (1957) The bulbar conjunctival lymphatics and their clinical significance. Trans Am Acad Ophthalmol Otolaryngol 61:212–223

    CAS  PubMed  Google Scholar 

  • Sun KX, Wang AP, Huang LJ, Liang RC, Liu K (2006) [Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics]. Yao Xue Xue Bao. 41(11):1094–1098

    CAS  PubMed  Google Scholar 

  • Szczesna DH, Jaronski J, Kasprzak HT, Stenevi U (2006) Interferometric measurements of dynamic changes of tear film. J Biomed Opt 11(3):340–352

    Google Scholar 

  • Szczesna DH, Kasprzak HT, Jaronski J, Rydz A, Stenevi U (2007) An interferometric method for the dynamic evaluation of the tear film. Acta Ophthalmol Scand 85:202–208

    PubMed  Google Scholar 

  • Szczesna-Iskander DH, Iskander DR (2012) Future directions in non-invasive measurements of tear film surface kinetics. Optom Vis Sci 89(5):749–759

    PubMed  Google Scholar 

  • Szulc J, Woyczikowski B, De Laval W (1988) Effect of pilocarpine hydrochloride liposomes on the intraocular pressure of the rabbit eye pupil. Farm Pol 44:462–465

    CAS  Google Scholar 

  • Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y (1996) Enteral absorption of insulin in rats from mucoadhesive chitosan coated liposomes. Pharm Res 13:896–901

    CAS  PubMed  Google Scholar 

  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH (2013) Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS Pharm Sci Tech 14:782–793

    CAS  Google Scholar 

  • Tiffany JM (2003) Tears in health and disease. Eye 17:1–4

    Google Scholar 

  • Tissie G, Sebastian C, Elena PP, Driot JY, Trinquand C (2002) Alginic acid effect on carteolol ocular pharmacokinetic in the pigmented rabbit. J Ocul Pharmacol Ther 18:65–73

    CAS  PubMed  Google Scholar 

  • Van Ooteghem M (1995) Preparations ophtalmiques. In: Galenica (ed) Technique and documentation. Lavoisier, Paris

    Google Scholar 

  • Vandamme TF, Brobeck L (2005) Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102(1):23–38

    CAS  PubMed  Google Scholar 

  • Vandervoort J, Ludwig A (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Biopharm 57:251–261

    CAS  Google Scholar 

  • Vyas, S.P., Khar, R.K., 2008. Ocular drug delivery, in controlled drug delivery. 384–385

    Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15:2724–2750

    CAS  PubMed  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2010) Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18(4):292–302

    CAS  PubMed  Google Scholar 

  • Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK (2014) Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces 122:423–431

    CAS  PubMed  Google Scholar 

  • Wen H, Hao J, Li SK (2013) Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab. J Pharm Sci 102:892–903

    CAS  PubMed  Google Scholar 

  • Wenger Y, Schneider RJ, Reddy GR, Kopelman R, Jolliet O, Philbert MA (2011) Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicol Appl Pharmacol 251:181–190

    CAS  PubMed  Google Scholar 

  • Wilson CG (2004) Topical drug delivery in the eye. Exp Eye Res 78(3):737–743

    CAS  PubMed  Google Scholar 

  • Wolff E (1946) The muco-cutaneous junction of the lid margin and the distribution of the tear fluid. Trans Ophthamol Soc UK 66:291–308

    Google Scholar 

  • Wolff E (1954) The Anatomy of the Eye and Orbit, fourth ed. H.K Lewis and Co, London. 49

    Google Scholar 

  • Worakul N, Robinson JR (1997) Ocular pharmacokinetics-pharmacodynamics. Eur J Pharm Biopharm 44(1627):71–83

    CAS  Google Scholar 

  • Yan Y, Ting L, Huang J (2009) Recent advances in bolaamphiphiles and oppositely charged conventional surfactants. J Colloid Interface Sci 337:1–10

    CAS  PubMed  Google Scholar 

  • Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 17:13–19

    Google Scholar 

  • Zeng W, Li Q, Wan T, Liu C, Pan W, Wu Z, Zhang G, Pan J, Qin M, Lin Y, Wu C, Xu Y (2016) Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf B Biointerfaces 1(141):28–35

    Google Scholar 

  • Zhou W, Wang Y, Jian J, Song S (2013) Self-aggregated nanoparticles based on amphiphilic poly (lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomed 8:3715–3728

    Google Scholar 

  • Zhu X, Su M, Tang S, Wang L, Liang X, Meng F, Hong Y, Xu Z (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. Mol Vis 18:1973–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer AK, Kreuter J, Robinson JR (1991) Studies on the transport pathway of PBCA nanoparticles in ocular tissues. J Microencapsul. 8(4):497–504

    CAS  PubMed  Google Scholar 

  • Zimmer AK, Zerbe H, Kreuter J (1994) Evaluation of pilocarpine-loaded albumin particles as drug delivery systems for controlled delivery in the eye. In vitro and in vivo characterisation. J Control Release 32:57–70

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Akhter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Zafar, A., Ahmad, J., Addo, R.T., Akhter, S. (2016). Progress of Controlled Drug Delivery Systems in Topical Ophthalmology: Focus on Nano and Micro Drug Carriers. In: Addo, R. (eds) Ocular Drug Delivery: Advances, Challenges and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-47691-9_9

Download citation

Publish with us

Policies and ethics