Skip to main content

Environmental Bioremediation: Biodegradation of Xenobiotic Compounds

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

In the modern era, industrialization is an essential tool or parameter to measure the growth of any country, but its adverse impact on the environment is also very well known to us. This impact would be further enhanced by the presence of xenobiotic compounds. Over the years, many hazardous waste sites have been developed worldwide resulting from the accumulation of xenobiotic compounds in different segments of earth based on their fate in air, soil, and water. Apart from this, these compounds are recalcitrant (which persist over a long period of time) in nature and pose serious health hazards like cancer. The major xenobiotic compounds are nitro-aromatic compounds, halogenated organic compounds, and other diverse groups of chemicals. The physicochemical methods to clean up these contaminated sites are not cost-effective. Therefore, special emphasis of research has been focused on biological methods for the degradation and elimination of these pollutants. Sites contaminated by these compounds need urgent attention for the solution through utilizing specific bacterial microorganisms which utilize them for their own energy and growth requirement and often convert into harmless products through mineralization, helping in environment’s cleaning. Biotransformation of these xenobiotic compounds on a large scale requires in-depth research to identify the degradation mechanism and the responsible genes by using biochemical genetic engineering tools. This approach will provide the base for the successful interventions into environmental processes and ultimately lead to optimized strategies for tapping of microbial diversity for efficient and effective bioremediation of xenobiotic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader E, Nadjia L, Ahmed B (2011) Degradation study of phenazin neutral red from aqueous suspension by paper sludge. J Chem Eng Process Technol 2:109–114

    CAS  Google Scholar 

  • Adriaens P, Vogel TM (1995) Biological treatment of chlorinated organics. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley, New York, pp 435–486

    Google Scholar 

  • Aislabie J, Jones G (1995) A review of bacterial-degradation of pesticides. Aust J Soil Res 33(6):925–942

    Article  CAS  Google Scholar 

  • Alves AMCR, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JGH, Wösten HAB (2004) High efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol 70:6379–6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin GA (2010) A potent biosurfactant producing bacterial strain for application in enhanced oil recovery applications. J Petrol Environ Biotechnol 1:104–110

    Article  CAS  Google Scholar 

  • Amin GA (2011) Integrated two-stage process for biodesulfurization of model oil by vertical rotating immobilized cell reactor with the bacterium rhodococcus erythropolis. J Petrol Environ Biotechnol 2:107

    Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbio Biotech 38:560–564

    Article  CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–129

    Article  CAS  Google Scholar 

  • Annette CD, Jerald LS (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  Google Scholar 

  • Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2:1–9

    Article  CAS  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad 1:1–8

    Article  CAS  Google Scholar 

  • Ashman M, Puri G (2002) Essential soil science a clear and concise introduction to soil science. Blackwell Science, Oxford

    Google Scholar 

  • Barr D, Aust S (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78–87

    Article  Google Scholar 

  • Barton LL, Hamilton WA (2007) Sulphate reducing bacteria: environmental and engineered system. Cambridge University, Cambridge, p. 558

    Book  Google Scholar 

  • Beam HW, Perry JJ (1973) Co-metabolism as a factor in microbial degradation of cyclo-paraffinic hydrocarbons. Arch Microbiol 91:87–90

    CAS  Google Scholar 

  • Bennet JW, Wunch KG, Faison BD (2002) Use of fungi biodegradation manual of environmental microbiology. ASM Press, Washington, DC

    Google Scholar 

  • Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgense BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bordenave S, Goni-Urriza M, Caumette P, Duran R (2009) Differential display analysis of cDNA involved in microbial mats response after heavy fuel oil contamination. J Microbial Biochem Technol 1:001–004

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Bumpus J, Aust S (1986) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bioessays 6:166–170

    Article  Google Scholar 

  • Burge WD (1969) Populations of dalapon-decomposing bacteria in soil as influenced by additions of dalapon or other carbon sources. Appl Microbiol 17:545–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of P Phanerochaete chrysosporium with the respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Faziurrahman OJG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48:95–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho NS, Wilkolazka AJ, Staszczak M, Cho HY, Ohga S (2009) The role of laccase from white rot fungi to stress conditions. J Fac Agric Kyushu Univ 54:81–83

    CAS  Google Scholar 

  • Cirino PC, Arnold FH (2002) Protein engineering of oxygenases for biocatalysis. Curr Opin Chem Biol 6(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Cookson JT (1995) Journal of bioremediation engineering: design and application. McGraw-Hill, New York

    Google Scholar 

  • Copley SD (1998) Microbial dehalogenases: enzymes recruited to convert xenobiotic substrates. Curr Opin Chem Biol 2:613–617

    Article  CAS  PubMed  Google Scholar 

  • Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265

    Article  CAS  PubMed  Google Scholar 

  • Cutter LA, Watts JEM, Sowers KR, May HD (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3:699–709

    Article  CAS  PubMed  Google Scholar 

  • Dagley S (1975) Microbial degradation of organic compounds in the biosphere. Am Sci 63(6):681–688

    CAS  PubMed  Google Scholar 

  • Dolfing J, Bloemen GBM (1985) Activity measurement as a tool to characterize the microbial composition of methanogenic environments. J Microbiol Methods 4:1–12

    Article  CAS  Google Scholar 

  • Dykes GA, Timm RG, Von HA (1994) Azoreductase activity in bacteria associated with the greening of instant chocolate puddings. Appl Environ Microbiol 60:3027–3029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elaziouti A, Laouedj N, Ahmed B (2011) Effect of pH solution on the optical properties of cationic dyes in dye/maghnia montmorillonite suspensions. J Chem Eng Process Technol 2:113–117

    CAS  Google Scholar 

  • Elbanna K, Hassan G, Khider M, Mandour R (2010) Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. J Bioremed Biodegrad 1:110–118

    CAS  Google Scholar 

  • El-Bondkly AM, Aboshosha AAM, Radwan NH, Dora SA (2010) Successive construction of ß-glucosidase hyperproducers of Trichoderma Harzianum using microbial biotechnology techniques. J Microbial Biochem Technol 2:070–073

    Article  CAS  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradioldioxygenases. J Bacteriol 178:5930–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve-Nunez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp strain JLR11. J Bacteriol 182(5):1352–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetzner S (1999) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    Article  Google Scholar 

  • Field J, Jong E, Feijo-Costa G, Bont J (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–49

    Article  CAS  Google Scholar 

  • Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegrad 62(4):376–383

    Article  CAS  Google Scholar 

  • Frazar C (2000) The bioremediation and phytoremediation of pesticide contaminated sites, national network of environmental studies. National Network of Environmental Studies Fellow, Washington, DC

    Google Scholar 

  • Fulthorpe RR, Wyndham RC (1989) Survival and activity of a 3-chlorobenzoate catabolic genotype in a natural system. Appl Environ Microbiol 55:1584–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa K (2003) ‘Super bugs’ for bioremediation. Trends Biotechnol 21:187–189

    Article  CAS  PubMed  Google Scholar 

  • Gadd G (ed) (2001) Fungi in bioremediation. Cambridge University, Cambridge

    Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(6):497–526

    Article  CAS  Google Scholar 

  • Gayathri KV, Vasudevan N (2010) Enrichment of phenol degrading moderately halophilic bacterial consortium from saline environment. J Bioremed Biodegrad 1:104–111

    Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Ann Rev Microbiol 56:345–369

    Article  CAS  Google Scholar 

  • Grigg BC, Bischoff M, Turco RF (1997) Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture. J Agric Food Chem 45:995–1000

    Article  CAS  Google Scholar 

  • Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2002) Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulation. J Polym Environ 8(4):183–195

    Article  Google Scholar 

  • Gursahani YH, Gupta SG (2011) Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Petrol Environ Biotechnol 2:111–117

    Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Eltis LD, Davies JE, Mohn WW (2007) Transcriptomic analysis reveals a bifurcated terepthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Rekik M (1989) Bacterial aromatic ring cleavage is classified into two different families. J Biol Chem 264:15328–15333

    CAS  PubMed  Google Scholar 

  • Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Marcel Dekker, New York, pp 99–156

    Google Scholar 

  • Hayaishi O, Nozaki M (1969) Nature and mechanism of oxygenases. Science 164(3878):389–396

    Article  CAS  PubMed  Google Scholar 

  • Heberer T (2002) Occurrence, fate and removal of pharmaceutical residues in the aquatic environment – a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  PubMed  Google Scholar 

  • Hernando MD, Ejerhoon M, Fernández-Alba AR, Chisti Y (2003) Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays. Water Res 37:4091–4098

    Article  CAS  PubMed  Google Scholar 

  • Hohener P, Hunkeler D, Hess A, Bregnard T, Zeyer J (1998) Methodology for the evaluation of engineered in situ bioremediation: lessons from a case study. J Microbiol Methods 32(2):179–192

    Article  CAS  Google Scholar 

  • Holm-Nielsen JB, T-Al S, Oleskowicz-Popiel P (2009) The future of anaerobic digestionand biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  PubMed  Google Scholar 

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36(2):146–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath RS, Alexander M (1970) Co-metabolism: a technique for the accumulation of biochemical products. Can J Microbiol 16:1131–1132

    Article  CAS  PubMed  Google Scholar 

  • Hosein SG, Millette D, Butler BJ, Greer CW (1997) Catabolic gene probe analysis of an aquifer microbial community degrading creosote-related polycyclic aromatic and heterocyclic compounds. Microbial Ecol 34:81–89

    Article  CAS  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26(4):201–221

    Article  CAS  PubMed  Google Scholar 

  • Imamul Huq SM, Abdullah MB, Joardar JC (2007) Bioremediation of arsenic toxicity by algae in rice culture. Land Contam Reclamat 15:327–334

    Article  Google Scholar 

  • Ismaila HY, Ijahb UJJ, Riskuwac ML, Allamina IA, Isaha MA (2014) Assessment of phytoremediation potentials of legumes in spent engine oil contaminated soil. Eur J Environ Saf Sci 2(2):59–64

    Google Scholar 

  • Jaanis J (2010) Impact of phytoremediation and bioaugmentation on the microbial community in oil shale chemical industry solid waste. Tarutu University, Tarutu

    Google Scholar 

  • Jame SA, Rashidul Alam AKM, Fakhruddin ANM, Alam MK (2010) Degradation of phenol by mixed culture of locally isolated Pseudomonas species. J Bioremed Biodegrad 1:102–112

    Article  CAS  Google Scholar 

  • Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P (2005) Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol 7:1868–1882

    Article  CAS  PubMed  Google Scholar 

  • Jennings DH, Burke RM (1990) Compatible solutes-the mycological dimension and their role as physiological buffering agents. New Phytol 116:277–283

    Article  CAS  Google Scholar 

  • Jensen HL (1963) Carbon nutrition of some microorganisms decomposing halogen substituted aliphatic acids. Acta Agric Scand 13:404–412

    Article  CAS  Google Scholar 

  • Joe J, Kothari RK, Raval CM, Kothari CR, Akbari VG et al (2011) Decolorization of textile dye remazol black b by Pseudomonas aeruginosa CR-25 isolated from the common effluent treatment plant. J Bioremed Biodegrad 2:118–125

    Article  Google Scholar 

  • Karanth NGK (2000) Challenges of limiting pesticide residues in fresh vegetables: the Indian experience food safety management in developing countries. CIRAD-FAO:11–13

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants. Enzyme Res 76:1–11

    Article  CAS  Google Scholar 

  • Kazumi J, Haggblom MM, Young LY (1995) Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors. Appl Microbiol Biotechnol 43:929–936

    Article  CAS  PubMed  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soils and water. Wiley, Chichester

    Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Khan JA, Rizvi SHA (2011) Isolation and characterization of micro-organism from oil contaminated sites. Advan Appl Sci Res 2(3):455–460

    CAS  Google Scholar 

  • Kolb M, Harms H (2002) Metabolism of fluoranthne in different plant cell cultures and intact plants. Environ Toxicol Chem 19:1304–1310

    Article  Google Scholar 

  • Kumar KK, Prasad MK, Sarma GVS, Murthy CVR (2009) Removal of Cd (II) from aqueous solution using immobilized Rhizomucor tauricus. J Microbial Biochem Technol 1:015–021

    Article  CAS  Google Scholar 

  • Kumar NK, Reddy DSR, Venkateswarlu P (2010) Application of response surface methodology for optimization of chromium biosorption from an aqueous solution onto Syzigium cumini (java) seed powder. J Microbial Biochem Technol 2:020–027

    Article  CAS  Google Scholar 

  • Kumari N, Vashishtha A, Saini P, Menghani E (2013) Isolation, identification and characterization of oil degrading bacteria isolated from the contaminated sites of Barmer, Rajasthan. Int J Biotechnol Bioeng Res 4(5):429–436

    Google Scholar 

  • Kurnaz SU, Buyukgungor H (2009) Assessment of various biomasses in the removal of phenol from aqueous solutions. J Microbial Biochem Technol 1:047–050

    CAS  Google Scholar 

  • Kyrikou J, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    Article  CAS  Google Scholar 

  • Lalithakumari D (2011) Microbes: “a tribute” to clean environment. University of Madras, Chennai

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lier JBV, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Hulshoff Pol LW, Lens P, Verstraete W (2001) New perspectives in anaerobic digestion. Water Sci Technol 43(1):1–18

    PubMed  Google Scholar 

  • Lloyd-Jones G, Laurie AD, Hunter DWF, Fraser R (1999) Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29:69–79

    Article  CAS  Google Scholar 

  • Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66:5141–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney S (2001) Pesticide degradation. In: Gadd G (ed) Fungi in bioremediation. Cambridge University, Cambridge

    Google Scholar 

  • Mandellbaum RT, Allan DL, Wackett LP (1995) Isolation and characterisation of a Pseudomonas sp that mineralises the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    Google Scholar 

  • Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microrganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 6(1):23–27

    CAS  Google Scholar 

  • Maria NDSU, Walter WW (2006) Phytoextraction of metal polluted soils in Latin America. Environmental Applications of Poplar and Willow Working Party

    Google Scholar 

  • Mbachu AE, Onochie CC, Agu KC, Okafor OI, Awah NS (2014) Hydrocarbon degrading potentials of indigenous bacteria isolated from auto-mechanic workshops at mgbuka-nkpor, Nigeria. J Global Biosci 3(1):321–326

    Google Scholar 

  • Meer JR, van der de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    PubMed  PubMed Central  Google Scholar 

  • Memic M, Vrtacnik M, Vatrenjak-Velagic V, Wissiak Grm KS (2005) Comparative biodegradation studies of pre-emergence broadleaf and grass herbicides in aqueous medium. Int Biodeterior Biodegrad 55:109–113

    Article  CAS  Google Scholar 

  • Mills DK, Fitzgerald K, Litchfield CD, Gillevet PM (2003) A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils. J Microbiol Methods 54(1):57–74

    Article  CAS  PubMed  Google Scholar 

  • Mirdamadian SH, Emtiazi G, Golabi MH, Ghanavati H (2010) Biodegradation of petroleum and aromatic hydrocarbons by bacteria isolated from petroleum-contaminated soil. J Petrol Environ Biotechnol 1:102–109

    Article  CAS  Google Scholar 

  • Mishra V, Lal R, Srinivasan (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

    Article  CAS  PubMed  Google Scholar 

  • Nogales B, Moore ERB, Abraham WR, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl polluted moorland soil. Environ Microbiol 1:199–212

    Article  CAS  PubMed  Google Scholar 

  • Nyanhongo G, Gübitz G, Prakit S, Leitner C, Haltrich D, Ludwig P (2007) Oxidoreductases from Trametes spp. in biotechnol: a wealth of catalytic activity. Food Technol Biotechnol 45(3):250–268

    CAS  Google Scholar 

  • Okoh AI (2003) Biodegradation of bonny light crude oil in soil microcosm by some bacterial strains isolated from crude oil flow stations saver pits in Nigeria. Afr J Biotechnol 2(5):104–108

    Article  CAS  Google Scholar 

  • Okuta A, Ohnishi K, Harayama S (1998) PCR isolation of catechol 2, 3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene 212:221–228

    Article  CAS  PubMed  Google Scholar 

  • Olajide PO, Ogbeifun LB (2010) Hydrocarbon biodegrading potentials of a Proteus vulgaris strain isolated from fish samples. Am J Appl Sci 7(7):922–928

    Article  CAS  Google Scholar 

  • Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridus as a test plant. J Bioremed Biodegrad 1:111–118

    Google Scholar 

  • Ortiz-Hernandez ML, Quintero-Ramirez R, Nava-Ocampo AA, Bello-Ramirez AM (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam Clin Pharmacol 17(6):717–723

    Article  CAS  PubMed  Google Scholar 

  • Owolabi RU, Osiyemi NA, Amosa MK, Ojewumi ME (2011) Biodiesel from household/restaurant waste cooking oil (WCO). J Chem Eng Process Technol 2:112–118

    CAS  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T (2010) Phycoremediation of heavy metals in polluted water bodies. Electron J Environ Agric Food 9:808–814

    CAS  Google Scholar 

  • Park JW, Park BK, Kim JE (2006) Remediation of soil contaminated with 2, 4-dichlorophenol by treatment of minced shepherd’s purse roots. Arch Environ Contam Toxicol 50(2):191–195

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G, Amini A, Bravo RC et al (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1017

    Article  CAS  Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Pointing S, Jones E, Vrijmoed L (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144

    Article  CAS  Google Scholar 

  • Poornima K, Karthik L, Swadhini SP, Mythili S, Sathiavelu A (2010) Degradation of chromium by using a novel strains of Pseudomonas species. J Microbial Biochem Technol 2:095–099

    Article  CAS  Google Scholar 

  • Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A, Harada H (2004) Identification and isolation of anaerobic, syntropic phthalate isomer degrading microbes from methanogenic sludges treating wastewater from terepthalate manufacturing. Appl Environ Microbiol 70:1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raeid MMA (2011) Unraveling the role of cyanobacterial mats in the cleanup of oil pollutants using modern molecular and microsensor tools. World Congress on Biotechnology, New Delhi

    Google Scholar 

  • Rajesh D, Anju H, Radha S, Poonam AS (2011) Saccharomyces cerevisiae: a potential biosorbent for biosorption of uranium. Int J Eng Sci Technol 3:5397–5407

    Google Scholar 

  • Ram SV, Srivastava PN (2008) Phytoremediation-green for environmental clean. In: The 12th World lake conference, Jaipur, pp 1016–1021

    Google Scholar 

  • Ramirez M, Chulze S, Magan N (2004) Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum. Mycologia 96(3):470–478

    Article  CAS  PubMed  Google Scholar 

  • Rao P, Hornsby A (2001) Behaviour of pesticides in soils and water. Fact Sheet SL40. University of Florida, Institute of Food and Agricultural Sciences, Gainesville

    Google Scholar 

  • Reddy C, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd G (ed) Fungi in bioremediation. Cambridge University, Cambridge

    Google Scholar 

  • Reddy N, Yang Y (2011) Plant proteins for medical applications. Trends Biotechnol 29(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Reuter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458

    Article  Google Scholar 

  • Romantschuk M, Sarand I, Petanene R, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjala K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107(2):179–185

    Article  CAS  PubMed  Google Scholar 

  • Sahrani FK, Ibrahim Z, Yahya A, Aziz M (2008) Isolation and identification of marine sulphate reducing bacteria, Desulfovibrio sp. and Citrobacter freundii from Pasir Gudang, Malaysia. Science 47:365–371

    Google Scholar 

  • Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123

    Article  CAS  PubMed  Google Scholar 

  • Santhoskumar AU, Palanivelu K, Sharma SK, Nayak SK (2010a) A new synthesis of nickel 12-hydroxy oleate formulation to improve polyolefi n’s degradation. J Bioremed Biodegrad 1:108–115

    Google Scholar 

  • Santhoskumar AU, Palanivelu K, Sharma SK, Nayak SK (2010b) Comparison of biological activity transistion metal 12 hydroxy oleate on photodegradation of plastics. J Bioremed Biodegrad 1:109–116

    Google Scholar 

  • Sasek V (2003) Why mycoremediations have not yet come to practice. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic, Amsterdam, pp 247–276

    Chapter  Google Scholar 

  • Sayler GS, Layton AC (1990) Environmental application of nucleic acid hybridization. Ann Rev Microbiol 44:625–648

    Article  CAS  Google Scholar 

  • Schink B, Philipp B, Muller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Microbiol 14:303–310

    CAS  Google Scholar 

  • Schoefs O, Perrier M, Samson R (2004) Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation modeland carbon dioxide measurement. Appl Microbiol Biotechnol 64:256–261

    Article  CAS  Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Mebmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56

    Article  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil plant system. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Singleton I (2001) Fungal remediation of soils contaminated with persistent organic pollutants. In: Gadd G (ed) Fungi in bioremediation. Cambridge University, Cambridge

    Google Scholar 

  • Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8:6016–6027

    Article  CAS  Google Scholar 

  • Sivasubramanian V, Subramanian VV, Muthukumaran M (2010) Bioremediation of chrome-sludge from an electroplating industry using the micro alga Desmococcus olivaceus—a pilot study. J Algal Biomass Utln 3:104–128

    Google Scholar 

  • Skipper H (1998) Bioremediation of contaminated soils. In: Sylvia D et al (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Somasundaram L, Coats R (1990) Influence of pesticide metabolites on the development of enhanced biodegradation. In: Racke KD, Coats JR (eds) Enhanced biodegradation of pesticides in the environment. American Chemical Society, Washington, DC

    Google Scholar 

  • Song B, Palleroni NJ, HaGgblom MM (2000) Isolation and characterization of diverse halobenzoate degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66(8):3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoki T, Kajita S, Uesugi M, Katayama Y, Iimura Y (2011) Effective removal of bisphenol a from contaminated areas by recombinant plant producing lignin peroxidase. J Petrol Environ Biotechnol 2:105–111

    Article  CAS  Google Scholar 

  • Soto M, Mendez R, Lema JM (1993) Methanogenic activity tests theoretical basis and experimental setup. Water Res 27:850–857

    Article  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  • Sunday AA, Matthew OI, Olukayode OA, Olakunle DT, Olatope SO (2006) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. J Am Sci 2(3):48–47

    Google Scholar 

  • Swift G (1998) Requirements for biodegradable water soluble polymers. Polym Degrad Stab 59:19–24

    Article  CAS  Google Scholar 

  • Takami H, Kudo T, Horikoshi K (1997) Isolation of extradiol dioxygenasegenes that is phylogenetically distant from other meta cleavage dioxygenase genes. Biosci Biotechnol Biochem 61:530–532

    Article  CAS  PubMed  Google Scholar 

  • Taliani MR, Roberts SC, Dukek BA, Pruthi RK, Nichols WL, Heit JA (2001) Sensitivity and specificity of denaturing high pressure liquid chromatography for unknown protein C gene mutations. Genet Test 5:39–44

    Article  CAS  PubMed  Google Scholar 

  • Taranenko NI, Hurt R, Zhou J, Isola NR, Huang H, Lee SH, Chen CH (2002) Laser desorption mass spectrometry for microbial DNA analysis. J Microbiol Method 48:101–106

    Article  CAS  Google Scholar 

  • Vamsee-Krishna C, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Micriobiol 48:19–34

    Article  CAS  Google Scholar 

  • Van Agteren MH, Keuning S, Janssen DB (1998) Handbook on biodegradation and biological treatment of hazardous organic compounds. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Vander JRM, Vos WMD, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    Google Scholar 

  • Vargas C, Song B, Camps M, Haggblom MM (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53:342–347

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2010) Isolation and characterization of a Pseudomonas fluorescens strain tolerant to major indian water pollutants. J Bioremed Biodegrad 1:101–109

    CAS  Google Scholar 

  • Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation and physiological characterization of functionally dominant phenol degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396–4402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei SH, Zhou QX, Wang X, Cao W, Ren LP (2004) Potential of weed species applied to remediation of soils contaminated with heavy metals. J Environ Sci 16:868–873

    Google Scholar 

  • Weller R, Ward DM (1989) Selective recovery of 16S ribosomal RNA sequences from natural microbial communities in the form of complementary DNA. Appl Environ Microbiol 55:1818–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel WW, Lombi E, Adriano D (1999) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants—from molecules to ecosystems. Springer, Heidelberg, pp 273–303

    Chapter  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59

    Article  CAS  PubMed  Google Scholar 

  • Williams PP (1977) Metabolism of synthetic organic pesticides by anaerobic microorganisms. Residue Rev 66:63–135

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Bouwer E (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol 18:116–130

    Article  CAS  PubMed  Google Scholar 

  • Wohlfarth G, Diekert G (1997) Anaerobic dehalogenases. Curr Opin Biotechnol 8:290–295

    Article  CAS  PubMed  Google Scholar 

  • Yatome C, Matsufuru H, Taguchi T, Ogawa T (1993) Degradation of 4- dimethylaminoazobenzene-2-carboxylic acid by Pseudomonas stutzeri. Appl Microbiol Biotechnol 39:778–781

    Article  CAS  Google Scholar 

  • Zhai G (2011) Phytoremediation: right plants for right pollutants. J Bioremed Biodegrad 2:102

    Google Scholar 

  • Zhang C, Bennet GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Quiao C (2002) Novel Approaches for remediation of pesticide pollutants. Int J Environ Pollut 18(5):423–433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh Kumar Basniwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goyal, P., Basniwal, R.K. (2017). Environmental Bioremediation: Biodegradation of Xenobiotic Compounds. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_23

Download citation

Publish with us

Policies and ethics