Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 351 Accesses

Abstract

Small asteroids in the size range of a 1 m–100 km are not monolithic bodies, but piles of rubble bound together mainly by gravitational forces and only weak cohesion. Little is known about the exact internal structure of these bodies. While to this day a handful of space mission acquired detailed images, shape models, and even a sample of micrometre size dust from the surface of rubble pile asteroids, no in-situ measurements of the interior have yet been accomplished. This thesis provides a tool to link impact features to surface structures, giving insights on the internal configuration of rubble pile asteroids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.minorplanetcenter.org.

  2. 2.

    http://dawnblog.jpl.nasa.gov/2015/05/28/dawn-journal-may-28-2015/.

References

  • Abe, S., T. Mukai, N. Hirata, O.S. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, T. Hashimoto, K. Hiraoka, T. Honda, T. Kubota, M. Matsuoka, T. Mizuno, R. Nakamura, D.J. Scheeres, and M. Yoshikawa. 2006. Mass and local topography measurements of Itokawa by Hayabusa. Science 312(5778): 1344–1347.

    Google Scholar 

  • Ahrens, T.J., and J.D. Okeefe. 1977. In: Impact and explosion cratering: Planetary and terrestrial implications; Proceedings of the symposium on planetary cratering mechanics, Flagstaff, Ariz., September, 1976. (A78-44030 19-91) New York, Pergamon Press, Inc., 1977, p. 639–656.

    Google Scholar 

  • Armitage, P.J. 2010. Astrophysics of planet formation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Asphaug, E., and W.W. Benz. 1994. Density of comet Shoemaker–Levy-9 deduced by modeling breakup of the parent rubble-pile. Nature 370(6485): 120–124.

    Google Scholar 

  • Asphaug, E. 1996. Size, density, and structure of comet Shoemaker–Levy 9 inferred from the physics of tidal breakup. Icarus 121(2): 225–248.

    Google Scholar 

  • Asphaug, E., E.V. Ryan, and M.T. Zuber. 2002. Asteroid interiors. In Asteroids III, ed. W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, 463–484. Tucson: University of Arizona Press. ISBN 978-0-8165-2281-1.

    Google Scholar 

  • August, T.M., and P.A. Wiegert. 2013. Color dependence in the size distribution of main belt asteroids revisited. The Astronomical Journal 145(6): 152.

    Google Scholar 

  • Benavidez, P.G., D.D. Durda, B.L. Enke, W.F. Bottke, D. Nesvorný, D.C. Richardson, E. Asphaug, and W.J. Merline. 2012. A comparison between rubble-pile and monolithic targets in impact simulations: Application to asteroid satellites and family size distributions. Icarus 219(1): 57–76.

    Google Scholar 

  • Benz, W.W., and E. Asphaug. 1999. Catastrophic disruptions revisited. Icarus 142: 5–20.

    Article  ADS  Google Scholar 

  • Beuther, H., R.S. Klessen, C.P. Dullemond, and T. Henning (eds.). 2014. Protostars and planets VI. Tucson: University of Arizona Press. ISBN 978-0-8165-3124-0.

    Google Scholar 

  • Binzel, R.P., P. Farinella, V. Zappalà, and A. Cellino. 1989. Asteroid rotation rates: Distributions and statistics. In Asteroids II; Proceedings of the conference, 416–441. Cambridge, MA: MIT.

    Google Scholar 

  • Bjork, R.L. 1961. Analysis of the formation of meteor crater, Arizona: A preliminary report. Journal of Geophysical Research 66(3379–3387): 50.

    Google Scholar 

  • Bockelée-Morvan, D., J. Crovisier, M.J. Mumma and H.A. Weaver. 2004. The composition of cometary volatiles. In Comets II. The University of Arizona Press in collaboration with the Lunar and Planetary Institute, 391–423. ISBN 0-8165-2450-5.

    Google Scholar 

  • Boss, A.P. 1998. Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. The Astrophysical Journal 503(2): 923–937.

    Google Scholar 

  • Bottke, W.F., D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlicky, and H.F. Levison. 2005b. The fossilized size distribution of the main asteroid belt. Icarus 175(1): 111–140.

    Google Scholar 

  • Bottke, W.F., D. Vokrouhlicky, D.P. Rubincam, and D. Nesvorný. 2006. The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annual Review of Earth and Planetary Sciences 34: 157–191.

    Article  ADS  Google Scholar 

  • Bowell, E., C.R. Chapman, J.C. Gradie, D. Morrison, and B. Zellner. 1978. Taxonomy of asteroids. Icarus 35: 313–335.

    Article  ADS  Google Scholar 

  • Breiter, S., and D. Vokrouhlicky. 2011. Yarkovsky–O’Keefe–Radzievskii–Paddack effect with anisotropic radiation. Monthly Notices of the Royal Astronomical Society 410(4): 2807–2816.

    Google Scholar 

  • Buczkowski, D.L., D.Y. Wyrick, K.A. Iyer, E.G. Kahn, J.E.C. Scully, A. Nathues, R.W. Gaskell, T. Roatsch, F. Preusker, P.M. Schenk, L. Le Corre, V. Reddy, R.A. Yingst, S. Mest, D.A. Williams, W.B. Garry, O.S. Barnouin, R. Jaumann, C.A. Raymond, and C.T. Russell. 2012. Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters 39(18): 1–6.

    Google Scholar 

  • Burbine, T.H. 2002. Small main-belt asteroid spectroscopic survey in the near-infrared. Icarus 159(2): 468–499.

    Google Scholar 

  • Bus, S.J. 2002a. Phase II of the small main-belt asteroid spectroscopic survey a feature-based taxonomy. Icarus 158(1): 146–177.

    Google Scholar 

  • Bus, S.J. 2002b. Phase II of the small main-belt asteroid spectroscopic survey the observations. Icarus 158(1): 106–145.

    Google Scholar 

  • Carpenter, J.M., E.E. Mamajek, L.A. Hillenbrand, and M.R. Meyer. 2006. Evidence for mass-dependent circumstellar disk evolution in the 5 Myr old upper scorpius OB association. The Astrophysical Journal 651(1): L49–L52.

    Google Scholar 

  • Carroll, M.M. 1972. Static and dynamic pore-collapse relations for ductile porous materials. Journal of Applied Physics 43(4): 1626.

    Google Scholar 

  • Carry, B. 2012. Density of asteroids. Planetary and Space Science 73(1): 98–118.

    Google Scholar 

  • Chang, C.-K., A. Waszczak, H.-W. Lin, W.-H. Ip, T.A. Prince, S.R. Kulkarni, R. Laher, and J. Surace. 2014. A new large super-fast rotator: (335433) 2005 UW163. The Astrophysical Journal 791(2): L35.

    Google Scholar 

  • Chapman, C.R., D. Morrison, and B. Zellner. 1975. Surface properties of asteroids: a synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25: 104–130.

    Article  ADS  Google Scholar 

  • Chapman, C.R. 1996. S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s Fly-bys of Gaspra and Ida. Meteoritics & Planetary Science 31: 699–725.

    Article  ADS  Google Scholar 

  • Chesley, S.R., S.J. Ostro, D. Vokrouhlicky, D. Čapek, J.D. Giorgini, M.C. Nolan, J.-L. Margot, A.A. Hine, L.A.M. Benner, and A.B. Chamberlin. 2003. Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science 302(5): 1739–1742.

    Google Scholar 

  • Collins, G.S. 2002. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157(1): 24–33.

    Google Scholar 

  • Collins, G.S., H.J. Melosh, and K. Wünnemann. 2011. Improvements to the \(\epsilon -\alpha \); porous compaction model for simulating impacts into high-porosity solar system objects. International Journal of Impact Engineering 38(6): 434–439.

    Google Scholar 

  • Cotto-Figueroa, D., T.S. Statler, D.C. Richardson, and P. Tanga. 2015. Coupled spin and shape evolution of small rubble-pile asteroids: Self-limitation of the YORP effect. Astrophysical Journal 803(1): 1–18.

    Google Scholar 

  • Ćuk, M., and J.A. Burns. 2005. Effects of thermal radiation on the dynamics of binary NEAs. Icarus 176(2): 418–431.

    Google Scholar 

  • Davis, D.R., D.D. Durda, F. Marzari, A. Campo Bagatin, and R. Gil-Hutton. 2002. Collisional evolution of small-body populations. In Asteroids III, ed. W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, 545–558. Tucson: University of Arizona Press. ISBN 978-0-8165-2281-1.

    Google Scholar 

  • DeMeo, F.E., R.P. Binzel, S.M. Slivan, and S.J. Bus. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202(1): 160–180.

    Google Scholar 

  • Dohnanyi, J.S.S. 1969. Collisional model of asteroids and their debris. Journal of Geophysical Research 74(10): 2531.

    Google Scholar 

  • Durda, D.D., W.F. Bottke, D. Nesvorný, B.L. Enke, W.J. Merline, E. Asphaug, and D.C. Richardson. 2007. Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus 186(2): 498–516.

    Google Scholar 

  • Earth Impact Database. 2011. ed. PASSC. http://www.passc.net/EarthImpactDatabase/brent.html. Build: 2011; visited 13 June 2015.

  • Farinella, P., P. Paolicchi, and V. Zappalà. 1982. The asteroids as outcomes of catastrophic collisions. Icarus 52: 409–433.

    Article  ADS  Google Scholar 

  • Garvin, J.B., and R.A.F. Grieve. 1982. An analytical model for simple terrestrial craters: Brent and meteor. In 13th lunar and planetary science conference, 251–252.

    Google Scholar 

  • Gault, D.E., W.L. Quaide, and V.R. Oberbeck. 1974. Impact cratering mechanics and structures. In Shock metamorphism of natural materials, eds. B.M. French and N.M. Short, 87–99. Mono book corp. Baltimore, US.

    Google Scholar 

  • Gault, D.E., and J.A. Wedekind. 1978. Experimental studies of oblique impact. In 9th lunar and planetary science conference, 3843–3875. Murphys, CA: California Institute of Technology, Pasadena; Murphys Center of Planetology.

    Google Scholar 

  • Geretshauser, R.J., R. Speith, and W. Kley. 2011. Collisions of inhomogeneous pre-planetesimals. Astronomy and Astrophysics 536: A104.

    Article  ADS  Google Scholar 

  • Gilbert, G.K. 1893. The moon’s face; a study of the origin of its features. Bulletin of the Philosophical Society of Washington 12: 242–292.

    ADS  Google Scholar 

  • Gladman, B.J., D.R. Davis, C. Neese, R. Jedicke, G. Williams, J.J. Kavelaars, J.-M. Petit, H. Scholl, M. Holman, B. Warrington, G. Esquerdo, and P. Tricarico. 2009. On the asteroid belt’s orbital and size distribution. Icarus 202(1): 104–118.

    Google Scholar 

  • Gomes, R., H.F. Levison, K. Tsiganis, and A. Morbidelli. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435(7041): 466–469.

    Google Scholar 

  • Güttler, C., J. Blum, A. Zsom, C.W. Ormel, and C.P. Dullemond. 2010. The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? Astronomy and Astrophysics 513: A56.

    Article  Google Scholar 

  • Hainaut, O.R., H. Boehnhardt, and S. Protopapa. 2012. Colours of minor bodies in the outer solar system. Astronomy and Astrophysics 546: A115.

    Article  ADS  Google Scholar 

  • Haisch, K.E.J., E.A. Lada, and C.J. Lada. 2001. Disk frequencies and lifetimes in young clusters. The Astrophysical Journal 553(2): L153–L156.

    Google Scholar 

  • Harris, A.W. 1994. Tumbling asteroids. Icarus 107: 209.

    Article  ADS  Google Scholar 

  • Harris, A.W. 1996. The Rotation rates of very small asteroids: Evidence for ‘rubble pile’ structure. In 27th lunar and planetary science conference, 493. Pasadena, CA: Jet Propulsion Laboratory.

    Google Scholar 

  • Harris, A.W., E.G. Fahnestock, and P. Pravec. 2009. On the shapes and spins of “rubble pile” asteroids. Icarus 199(2): 310–318.

    Google Scholar 

  • Herrmann, W. 1969. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics 40(6): 2490.

    Google Scholar 

  • Hildebrand, A.R., G.T. Penfield, D.A. Kring, M. Pilkington, A.Z. Camargo, S.B. Jacobsen and W.V. Boynton. 1991. Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19(9): 867.

    Google Scholar 

  • Holsapple, K.A., and R.M. Schmidt. 1982. On the scaling of crater dimensions. II—impact processes. Journal of Geophysical Research: Solid Earth 87: 1849–1870.

    Article  Google Scholar 

  • Holsapple, K.A., and R.M. Schmidt. 1987. Point source solutions and coupling parameters in cratering mechanics. Journal of Geophysical Research 92: 6350–6376.

    Article  ADS  Google Scholar 

  • Holsapple, K.A. 1993. The scaling of impact processes in planetary sciences. Annual Review of Earth and Planetary Sciences 21: 333–373.

    Article  ADS  Google Scholar 

  • Holsapple, K.A., I. Giblin, K.R. Housen, A.M. Nakamura, and E.V. Ryan. 2002. Asteroid impacts: Laboratory experiments and scaling laws. In Asteroids III, ed. W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, 443–462. Tucson: University of Arizona Press. ISBN 978-0-8165-2281-1.

    Google Scholar 

  • Holsapple, K.A. 2007. Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus 187(2): 500–509.

    Google Scholar 

  • Holsapple, K.A. 2009. On the “strength” of the small bodies of the solar system: A review of strength theories and their implementation for analyses of impact disruptions. Planetary and Space Science 57(2): 127–141.

    Google Scholar 

  • Housen, K.R., and K.A. Holsapple. 1990. On the fragmentation of asteroids and planetary satellites. Icarus 84: 226–253.

    Article  ADS  Google Scholar 

  • Housen, K.R., and K.A. Holsapple. 1999. Scale effects in strength-dominated collisions of rocky asteroids. Icarus 142(1): 21–33.

    Google Scholar 

  • Hsieh, H.H., D.C. Jewitt, and Y.R. Fernandez. 2004. The strange case of 133P/Elst-Pizarro: A comet among the asteroids. The Astronomical Journal, 127(5): 2997–3017, 5/2004

    Google Scholar 

  • Hsieh, H.H., D.C. Jewitt, P. Lacerda, S.C. Lowry, and C. Snodgrass. 2010. The return of activity in main-belt comet 133P/Elst-Pizarro. Monthly Notices of the Royal Astronomical Society 403(1): 363–377.

    Google Scholar 

  • Huss, G.R., G.J. MacPherson, G.J. Wasserburg, S.S. Russell, and G. Srinivasan. 2001. 26Al in CAIs and chondrules from unequilibrated ordinary chondrites. Meteoritics & Planetary Science 36: 975–997.

    Article  ADS  Google Scholar 

  • Ivanov, B.A. 2005. Numerical modeling of the largest terrestrial meteorite craters. Solar System Research 39(5): 381–409.

    Google Scholar 

  • Jewitt, D.C., H.A. Weaver, J. Agarwal, M. Mutchler, and M. Drahus. 2010. A recent disruption of the main-belt asteroid P/2010 A2. Nature 467(7317): 817–819.

    Google Scholar 

  • Johansen, A., A.N. Youdin, and Y. Lithwick. 2012. Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy and Astrophysics 537: A125.

    Article  ADS  Google Scholar 

  • Johansen, A., J. Blum, H. Tanaka, C. Ormel, M. Bizzarro, and H. Rickman. 2014. The multifaceted planetesimal formation process. Protostars and Planets VI: 547–570.

    ADS  Google Scholar 

  • Jorda, L., P.L. Lamy, R.W. Gaskell, M. Kaasalainen, O. Groussin, S. Besse, and G. Faury. 2012. Asteroid (2867) Steins: Shape, topography and global physical properties from OSIRIS observations. Icarus 221(2): 1089–1100.

    Google Scholar 

  • Jutzi, M., P.P. Michel, and W.W. Benz. 2010a. A large crater as a probe of the internal structure of the E-type asteroid Steins. Astronomy and Astrophysics 509: L2.

    Article  ADS  Google Scholar 

  • Jutzi, M., P.P. Michel, W.W. Benz, and D.C. Richardson. 2010b. Fragment properties at the catastrophic disruption threshold: The effect of the parent body’s internal structure. Icarus 207(1): 54–65.

    Google Scholar 

  • Kenkmann, T., G.S. Collins, and K. Wünnemann. 2012. The modification stage of crater formation. In Impact cratering, ed. G.R. Osinski, and E. Pierazzo, 60–75. New York: Wiley. ISBN 9781118447307.

    Chapter  Google Scholar 

  • Kryszczyńska, A. 2013. Do Slivan states exist in the Flora family? Astronomy and Astrophysics 551: A102.

    Article  Google Scholar 

  • Kwiatkowski, T. 2010. Photometric survey of the very small near-Earth asteroids with the SALT telescope. Astronomy and Astrophysics 509: A95.

    Article  ADS  Google Scholar 

  • Lacerda, P., S. Fornasier, E. Lellouch, C. Kiss, E. Vilenius, P. Santos-Sanz, M. Rengel, T.G. Müller, J. Stansberry, R. Duffard, A. Delsanti, and A. Guilbert-Lepoutre. 2014. The Albedo-Color diversity of transneptunian objects. The Astrophysical Journal Letters 793(1): L2.

    Google Scholar 

  • Leinhardt, Z.M., and S.T. Stewart. 2011. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. The Astrophysical Journal 745(1): 79.

    Google Scholar 

  • Love, S.G., F. Hörz, and D.E. Brownlee. 1993. Target porosity effects in impact cratering and collisional disruption. Icarus 105(1): 216–224.

    Google Scholar 

  • Love, S.G., and T.J.J. Ahrens. 1996. Catastrophic impacts on gravity dominated asteroids. Icarus 124(1): 141–155.

    Google Scholar 

  • Lowry, S.C., A. Fitzsimmons, P. Pravec, D. Vokrouhlicky, H. Boehnhardt, P.A. Taylor, J.-L. Margot, A. Galád, M. Irwin, J. Irwin, and P. Kusnirák. 2007. Direct detection of the asteroidal YORP effect. Science 316(5822): 272–274.

    Google Scholar 

  • Lowry, S.C., P.R. Weissman, S.R. Duddy, B. Rozitis, A. Fitzsimmons, S.F. Green, M.D. Hicks, C. Snodgrass, S.D. Wolters, S.R. Chesley, J. Pittichova, and P. van Oers. 2014. The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up. Astronomy and Astrophysics 562: A48.

    Article  ADS  Google Scholar 

  • Lowry, S.C. 2015. The search for observational detections of the YORP effect. In Thermal models for planetary sciences II. Puerto de la Cruz, Conference Abstract.

    Google Scholar 

  • Marsh, S.P. 1980. Lasl shock Hugoniot data. Oakland, CA: Univ of California Press.

    Google Scholar 

  • McCoy, T.J., D.W. Mittlefehldt, and L. Wilson. 2006. Asteroid differentiation. In Meteorites and the early solar system II, eds. D.S. Lauretta, and H.Y. McSween Jr., University of Arizona Press, Tucson, pp. 733–745, 943.

    Google Scholar 

  • McQueen, R.G., S.P. Marsh, and J.N. Fritz. 1967. Hugoniot equation of state of twelve rocks. Journal of Geophysical Research 72: 4999.

    Article  ADS  Google Scholar 

  • Melosh, H.J. 1989. ‘Impact cratering:’ A geologic process. New York: Oxford Monographs on Geology and Geophysics.

    Google Scholar 

  • Melosh, H.J., E.V. Ryan, and E. Asphaug. 1992. Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts. Journal of Geophysical Research 97: 14735.

    Article  ADS  Google Scholar 

  • Melosh, H.J., and E.V. Ryan. 1997. NOTE: Asteroids: Shattered but not dispersed. Icarus 129(2): 562–564.

    Google Scholar 

  • Melosh, H.J., and B.A. Ivanov. 1999. Impact crater collapse. Annual Review of Earth and Planetary Sciences 27: 385–415.

    Article  ADS  Google Scholar 

  • Michel, P.P., W.W. Benz, P. Tanga, and D.C. Richardson. 2001. Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science 294(5547): 1696–1700.

    Google Scholar 

  • Michel, P.P., W.W. Benz, and D.C. Richardson. 2003. Disruption of fragmented parent bodies as the origin of asteroid families. Nature 421(6923): 608–611.

    Google Scholar 

  • Michel, P.P., W.W. Benz, and D.C. Richardson. 2004b. Catastrophic disruption of pre-shattered parent bodies. Icarus 168(2): 420–432.

    Google Scholar 

  • Michel, P.P., and D.C. Richardson. 2013. Collision and gravitational reaccumulation: Possible formation mechanism of the asteroid Itokawa. Astronomy and Astrophysics 554: L1.

    Article  ADS  Google Scholar 

  • Michel, P.P., D.C. Richardson, D.D. Durda, M. Jutzi and E. Asphaug. 2015. Collisional formation and modeling of asteroid families. arXiv:1502.03929v1 [astro-ph.EP].

  • Michikami, T., A.M. Nakamura, N. Hirata, R.W. Gaskell, R. Nakamura, T. Honda, C. Honda, K. Hiraoka, J. Saito, H. Demura, M. Ishiguro and H. Miyamoto. 2008. Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa. In Earth Planets and Space, 13–20. Iwaki: Fukushima Natl Coll Technol.

    Google Scholar 

  • Michikami, T., A.M. Nakamura, and N. Hirata. 2010. The shape distribution of boulders on Asteroid 25143 Itokawa: Comparison with fragments from impact experiments. Icarus 207(1): 277–284.

    Google Scholar 

  • Mitchell, J.K., W.N. Houston, W.D. Carrier III and N.C. Costes. 1974. Apollo soil mechanics experiment S-200. Tech. rep. 15.

    Google Scholar 

  • Morbidelli, A., H.F. Levison, K. Tsiganis, and R. Gomes. 2005. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435(7041): 462–465.

    Google Scholar 

  • Morbidelli, A., W.F. Bottke, D. Nesvorný, and H.F. Levison. 2009. Asteroids were born big. Icarus 204(2): 558–573.

    Google Scholar 

  • Morbidelli, A., J.I. Lunine, D.P. O’Brien, S.N. Raymond, and K.J. Walsh. 2012. Building terrestrial planets. Annual Review of Earth and Planetary Sciences 40: 251–275.

    Article  ADS  Google Scholar 

  • Movshovitz, N., E. Asphaug and D.G. Korycansky. 2012. The physics of granular flow and the tidal disruption of comet Shoemaker–Levy 9. arXiv:1207.3386 [astro-ph.EP].

  • Nakazawa, S., S. Watanabe, M. Kato, Y. Iijima, T. Kobayashi, and T. Sekine. 1997. Hugoniot equation of state of basalt. Planetary and Space Science 45: 1489–1492.

    Article  ADS  Google Scholar 

  • Nesvorný, D., A. Morbidelli, D. Vokrouhlicky, W.F. Bottke, and M. Broz. 2002. The Flora family: A case of the dynamically dispersed collisional swarm? Icarus 157(1): 155–172.

    Google Scholar 

  • Norris, T.L., A.J. Gancarz, D.J. Rokop, and K.W. Thomas. 1983. Half-life of Al-26. In Lunar and planetary science conference proceedings, B331–B333. Los Alamos, NM: Los Alamos National Laboratory.

    Google Scholar 

  • O’Brien, D.P., and R. Greenberg. 2003. Steady-state size distributions for collisional populations. Icarus 164(2): 334–345.

    Google Scholar 

  • Opik, E.J. 1951. Collision probability with the planets and the distribution of planetary matter. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences 54: 165–199.

    MATH  Google Scholar 

  • Orphal, D.L. 1977a. Calculations of explosion cratering. I—the shallow-buried nuclear detonation JOHNIE BOY. Impact and Explosion Cratering: Planetary and Terrestrial Implications 1: 897–906.

    ADS  Google Scholar 

  • Orphal, D.L. 1977b. Calculations of explosion cratering. II—Cratering mechanics and phenomenology. Impact and Explosion Cratering: Planetary and Terrestrial Implications 1: 907–917.

    ADS  Google Scholar 

  • Osinski, G.R., P. Lee, J. Parnell, J.G. Spray, and M. Baron. 2005. A case study of impact-induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics 40(1): 1859–1877.

    Google Scholar 

  • Osinski, G.R., and E. Pierazzo (eds.). 2012. Impact cratering. In Processes and products. New York: Wiley. ISBN 9781118447307.

    Google Scholar 

  • Ostro, S.J., J.L. Margot, L.A.M. Benner, J.D. Giorgini, D.J. Scheeres, E.G. Fahnestock, S.B. Broschart, J. Bellerose, M.C. Nolan, C. Magri, P. Pravec, P. Scheirich, R. Rose, R.F. Jurgens, E.M. De Jong, and S. Suzuki. 2006. Radar imaging of binary near-Earth Asteroid (66391) 1999 KW4. Science 314(5803): 1276–1280.

    Google Scholar 

  • Pierazzo, E., and H.J. Melosh. 2000a. Hydrocode modeling of oblique impacts: The fate of the projectile. Meteoritics & Planetary Science 35: 117–130.

    Article  ADS  Google Scholar 

  • Pierazzo, E., and H.J. Melosh. 2000b. Understanding oblique impacts from experiments, observations, and modeling. Annual Review of Earth and Planetary Sciences 28: 141–167.

    Article  ADS  Google Scholar 

  • Pope, K.O., K.H. Baines, A.C. Ocampo, and B.A. Ivanov. 1994. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth and Planetary Science Letters 128(3): 719–725.

    Google Scholar 

  • Pravec, P., and A.W. Harris. 2000. Fast and slow rotation of asteroids. Icarus 148: 12–20.

    Article  ADS  Google Scholar 

  • Pravec, P., A.W. Harris, and T. Michalowski. 2002a. Asteroid rotations. In Asteroids III, ed. W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, 113–122. Tucson: University of Arizona Press. ISBN 978-0-8165-2281-1.

    Google Scholar 

  • Pravec, P., P. Kusnirák, L. Šarounová, A.W. Harris, R.P. Binzel and A.S. Rivkin. 2002b. Large coherent asteroid 2001 OE84. In Proceedings of asteroids, comets, meteors (ACM 2002), 743–745.

    Google Scholar 

  • Pravec, P., A.W. Harris, P. Scheirich, P. Kusnirák, L. Šarounová, C.W. Hergenrother, S. Mottola, M.D. Hicks, G. Masi, Y.N. Krugly, V.G. Shevchenko, M.C. Nolan, E.S. Howell, M. Kaasalainen, A. Galád, P. Brown, D.R. DeGraff, J.V. Lambert, W.R. Cooney Jr., and S. Foglia. 2005. Tumbling asteroids. Icarus 173(1): 108–131.

    Google Scholar 

  • Pravec, P., D. Vokrouhlicky, D. Polishook, D.J. Scheeres, A.W. Harris, A. Galád, O. Vaduvescu, F. Pozo, A. Barr, P. Longa, F. Vachier, F. Colas, D.P. Pray, J. Pollock, D. Reichart, K. Ivarsen, J. Haislip, A. LaCluyze, P. Kusnirák, T. Henych, F. Marchis, B. Macomber, S.A. Jacobson, Y.N. Krugly, A.V. Sergeev and A. Leroy. 2010. Formation of asteroid pairs by rotational fission. 7310: 1085–1088. arXiv:1009.2770v1 [astro-ph.EP]

  • Price, M.C., A.T. Kearsley, M.J. Burchell, L.E. Howard, J.K. Hillier, N.A. Starkey, P.J. Wozniakiewicz, and M.J. Cole. 2012. Stardust interstellar dust calibration: Hydrocode modeling of impacts on Al-1100 foil at velocities up to 300 km s\(^{-1}\) and validation with experimental data. Meteoritics & Planetary Science 47(4): 684–695.

    Google Scholar 

  • Price, M.C., C. Solscheid, M.J. Burchell, L. Josse, N. Adamek, and M.J. Cole. 2013. Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s\(^{-1}\). Icarus 222(1): 263–272.

    Google Scholar 

  • Richardson, D.C., Z.M. Leinhardt, H.J. Melosh, W.F. Bottke, and E. Asphaug. 2002. Gravitational aggregates: Evidence and evolution. In Asteroids III, ed. W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel, 501–515. Tucson: University of Arizona Press. ISBN 978-0-8165-2281-1.

    Google Scholar 

  • Rozitis, B., and S.F. Green. 2011. Directional characteristics of thermal-infrared beaming from atmosphereless planetary surfaces - a new thermophysical model. Monthly Notices of the Royal Astronomical Society 415(3): 2042–2062.

    Google Scholar 

  • Rozitis, B., and S.F. Green. 2012. The influence of rough surface thermalinfrared beaming on the Yarkovsky and YORP effects. Monthly Notices of the Royal Astronomical Society 423(1): 367–388.

    Google Scholar 

  • Rozitis, B., and S.F. Green. 2013. The influence of global self-heating on the Yarkovsky and YORP effects. Monthly Notices of the Royal Astronomical Society 433(1): 603–621.

    Google Scholar 

  • Rozitis, B., E. MacLennan, and J.P. Emery. 2014. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512(7513): 174–176.

    Google Scholar 

  • Rubincam, D.P. 2000. Radiative spin-up and spin-down of small asteroids. Icarus 148: 2–11.

    Article  ADS  Google Scholar 

  • Ryan, E.V., and H.J. Melosh. 1998. Impact fragmentation: From the laboratory to asteroids. Icarus 133(1): 1–24.

    Google Scholar 

  • Saito, J., H. Miyamoto, R. Nakamura, M. Ishiguro, T. Michikami, A.M. Nakamura, H. Demura, S. Sasaki, N. Hirata, C. Honda, A. Yamamoto, Y. Yokota, T. Fuse, F. Yoshida, D.J. Tholen, R.W. Gaskell, T. Hashimoto, T. Kubota, Y. Higuchi, T. Nakamura, P. Smith, K. Hiraoka, T. Honda, S. Kobayashi, M. Furuya, N. Matsumoto, E. Nemoto, A. Yukishita, K. Kitazato, B. Dermawan, A. Sogame, J. Terazono, C. Shinohara, and H. Akiyama. 2006. Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312(5778): 1341–1344.

    Google Scholar 

  • Saito, T., K. Kaiho, A. Abe, M. Katayama, and K. Takayama. 2008. Hypervelocity impact of asteroid/comet on the oceanic crust of the earth. International Journal of Impact Engineering 35(12): 1770–1777.

    Google Scholar 

  • Salo, H. 1987. Numerical simulations of collisions between rotating particles. Icarus 70: 37–51.

    Article  ADS  Google Scholar 

  • Sánchez, P., and D.J. Scheeres. 2012. DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids. Icarus 218(2): 876–894.

    Google Scholar 

  • Scheeres, D.J., E.G. Fahnestock, S.J. Ostro, J.L. Margot, L.A.M. Benner, S.B. Broschart, J. Bellerose, J.D. Giorgini, M.C. Nolan, C. Magri, P. Pravec, P. Scheirich, R. Rose, R.F. Jurgens, E.M. De Jong, and S. Suzuki. 2006. Dynamical configuration of binary near-Earth asteroid (66391) 1999 KW4. Science 314(5803): 1280–1283.

    Google Scholar 

  • Schenk, P.M., E. Asphaug, W.B. McKinnon, H.J. Melosh, and P.R. Weissman. 1996. Cometary nuclei and tidal disruption: The geologic record of crater chains on Callisto and Ganymede. Icarus 121(2): 249–274.

    Google Scholar 

  • Schulte, P., L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, H.J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, and P.S. Willumsen. 2010. The Chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science 327(5): 1214.

    Google Scholar 

  • Sierks, H., P.L. Lamy, C. Barbieri, D. Koschny, and H. Rickman. 2011. Images of asteroid 21 Lutetia: A remnant planetesimal from the early solar system. Science 334: 487–490.

    Article  ADS  Google Scholar 

  • Slivan, S.M. 2002. Spin vector alignment of Koronis family asteroids. Nature 419(6): 49–51.

    Google Scholar 

  • Slivan, S.M., R.P. Binzel, L.D. Crespo da Silva, M. Kaasalainen, M.M. Lyndaker, and M. Krčco. 2003. Spin vectors in the Koronis family: Comprehensive results from two independent analyses of 213 rotation lightcurves. Icarus 162(2): 285–307.

    Google Scholar 

  • Statler, T.S. 2009. Extreme sensitivity of the YORP effect to small-scale topography. arXiv:0903.1119v1 [astro-ph.EP].

  • Statler, T.S. 2015. Obliquities of “top-shaped” asteroids may not imply reshaping y YORP spin-up. Icarus 248C: 313–317.

    Article  ADS  Google Scholar 

  • Tanga, P., C. Comito, P. Paolicchi, D. Hestroffer, A. Cellino, A. dell’Oro, D.C. Richardson, K.J. Walsh and M. Delbó. 2009. Rubble-pile reshaping reproduces overall asteroid shapes. The Astrophysical Journal 706(1): L197–L202.

    Google Scholar 

  • Taylor, G. 1950. The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, 201(1065): 175–186. doi:10.1098/rspa.1950.0050

  • Taylor, P.A., J.L. Margot, D. Vokrouhlicky, D.J. Scheeres, P. Pravec, S.C. Lowry, A. Fitzsimmons, M.C. Nolan, S.J. Ostro, L.A.M. Benner, J.D. Giorgini, and C. Magri. 2007. Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect. Science 316(5822): 274–277.

    Google Scholar 

  • Terebey, S., F.H. Shu, and P. Cassen. 1984. The collapse of the cores of slowly rotating isothermal clouds. Astrophysical Journal 286: 529–551.

    Article  ADS  Google Scholar 

  • Tholen, D.J. 1989. Asteroid taxonomic classifications. In Asteroids II; Proceedings of the conference, ed. R.P. Binzel, T. Gehrels, and M.S. Matthews, 1139–1150.

    Google Scholar 

  • Thomas, P.C., J.W. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, and E.F. Young. 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature 437(7056): 224–226.

    Google Scholar 

  • Tsiganis, K., R. Gomes, A. Morbidelli, and H.F. Levison. 2005. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435(7041): 459–461.

    Google Scholar 

  • Turtle, E.P., E. Pierazzo, G.S. Collins, G.R. Osinski, H.J. Melosh, J.V. Morgan, and W.U. Reimold. 2004. Impact structures: What does crater diameter mean. In Large meteorite impacts III, 1–24. Geological Society of America. ISBN 9780813723846.

    Google Scholar 

  • Udry, S., and N.C. Santos. 2007. Statistical properties of exoplanets. Annual Review of Astronomy and Astrophysics 45(1): 397–439.

    Google Scholar 

  • van Houten, C.J., I. van Houten-Groeneveld, P. Herget, and T. Gehrels. 1970. The Palomar–Leiden survey of faint minor planets. Astronomy & Astrophysics Supplement Series 2: 339–448.

    Google Scholar 

  • Vokrouhlicky, D., D. Nesvorný, and W.F. Bottke. 2003. The vector alignments of asteroid spins by thermal torques. Nature 425(6954): 147–151.

    Google Scholar 

  • Vokrouhlicky, D., W.F. Bottke, S.R. Chesley, D.J. Scheeres and T.S. Statler 2015. The Yarkovsky and YORP effects. arXiv:1502.01249v1 [astro-ph.EP].

  • Wahlberg Jansson, K., and A. Johansen. 2014. Formation of pebble-pile planetesimals. Astronomy and Astrophysics 570: A47.

    Article  ADS  Google Scholar 

  • Walsh, K.J., D.C. Richardson, and P.P. Michel. 2008. Rotational breakup as the origin of small binary asteroids. Nature 454(7201): 188–191.

    Google Scholar 

  • Walsh, K.J., A. Morbidelli, S.N. Raymond, D.P. O’Brien, and A.M. Mandell. 2012. Populating the asteroid belt from two parent source regions due to the migration of giant planets—“The Grand Tack”. Meteoritics & Planetary Science 47(1): 1941–1947.

    Google Scholar 

  • Warner, B.D., A.W. Harris, and P. Pravec. 2009. The asteroid lightcurve database. Icarus 202(1): 134–146.

    Google Scholar 

  • Warner, B.D., A.W. Harris and P. Pravec. 2014. Asteroid Lightcurve Database (LCDB). http://www.MinorPlanet.info/lightcurvedatabase.html. Visited on 15 Dec 2014.

  • Weibull, W. 1939. A statistical theory of strength of materials. Generalstabens Litografiska Anstalts Förl 45.

    Google Scholar 

  • Weidenschilling, S.J. 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus 214(2): 671–684.

    Google Scholar 

  • Weiss, B.P., L.T. Elkins-Tanton, M.A. Barucci, H. Sierks, C. Snodgrass, J.-B. Vincent, S. Marchi, P.R. Weissman, M. Pätzold, I. Richter, M. Fulchignoni, R.P. Binzel, and R. Schulz. 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science 66(1): 137–146.

    Google Scholar 

  • Windmark, F., T. Birnstiel, C.W. Ormel, and C.P. Dullemond. 2012a. Breaking through: The effects of a velocity distribution on barriers to dust growth. Astronomy and Astrophysics 544: L16.

    Article  ADS  Google Scholar 

  • Windmark, F., T. Birnstiel, C. Güttler, J. Blum, C.P. Dullemond, and T. Henning. 2012b. Planetesimal formation by sweep-up: How the bouncing barrier can be beneficial to growth. Astronomy and Astrophysics 540: A73.

    Article  ADS  Google Scholar 

  • Wood, C.A., and L. Anderson. 1978. New morphometric data for fresh lunar craters. In 9th lunar and planetary science conference, 3669–3689. Providence, R.I.: Brown University.

    Google Scholar 

  • Wozniakiewicz, P.J., M.C. Price, S.P. Armes, M.J. Burchell, M.J. Cole, L.A. Fielding, J.K. Hillier, and J.R. Lovett. 2014. Micron-scale hypervelocity impact craters: Dependence of crater ellipticity and rim morphology on impact trajectory, projectile size, velocity, and shape. Meteoritics & Planetary Science 49(10): 1929–1947.

    Google Scholar 

  • Wünnemann, K., G.S. Collins, and H.J. Melosh. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180(2): 514–527.

    Google Scholar 

  • Wyatt, M.C. 2008. Evolution of debris disks. Annual Review of Astronomy and Astrophysics 46(1): 339–383.

    Google Scholar 

  • Yoshida, F., and T. Nakamura. 2007. Subaru Main Belt Asteroid Survey (SMBAS)—size and color distributions of small main-belt asteroids. Planetary and Space Science 55(9): 1113–1125.

    Google Scholar 

  • Youdin, A.N., and J. Goodman. 2005. Streaming instabilities in protoplanetary disks. The Astrophysical Journal 620(1): 459–469.

    Google Scholar 

  • Zellner, B., D.J. Tholen, and E.F. Tedesco. 1985. The eight-color asteroid survey: Results for 589 minor planets. Icarus 61: 355–416.

    Article  ADS  Google Scholar 

  • Zsom, A., C.W. Ormel, C. Güttler, J. Blum, and C.P. Dullemond. 2010. The outcome of protoplanetary dust growth: Pebbles, boulders, or planetesimals? Astronomy and Astrophysics 513: A57.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Deller .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deller, J. (2017). Introduction. In: Hyper-Velocity Impacts on Rubble Pile Asteroids. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-47985-9_1

Download citation

Publish with us

Policies and ethics