Skip to main content

Light Driven Nanomaterials for Removal of Agricultural Toxins

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 3

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 23))

Abstract

Globalization has catalyzed the agricultural sector for prompting the trade across the globe with derived benefits to the growth of the nation. Many nations depend highly on the agricultural industry both for earning foreign exchange and fullfilling local needs. In the last decades the industry has emerged owing to the superior technology development and its demand in global market. As a consequence industry has contributed to the diffusion of new xenobiotics, such as pesticides, in to the aquatic environment. Pesticides are used for reducing crop infection and increasing crop yield. The usage pesticides and fungicides can rarely be stopped because of the complexity of the pests. Thus removal of xenobiotics from the aquatic environment is mandatory, since they contribute for wide range of detrimental effects to flora, fauna and well beings. Heterogeneous photocatalysis, a subset of advanced oxidation processes, is one of the means to clean waters.

Here we review the use light driven nanomaterials for remediation of agricultural pollutants. Light driven nanomaterials are very effective and convert organic pesticides into nontoxic small molecule such as carbon dioxide and water. Titanium dioxide and modified titanium dioxide photocatalysts show a good performance in eliminating the pesticides such as 2,4-dichlorophenol and 2-chlorophenol. Ag-modified titania removes 60 % of 2,4-dichlorophenol from aqueous solutions with initial concentration of 20 mg/l. The modification of the titanium dioxide increases the removal rate by 4.3 times compared to the initial titanium dioxide. Similarly, the titanium dioxide nanotubes (TNT) also exhibit an excellent performance in degrading 2-chlorophenol in the presence of visible light source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelsayed V, Moussa S, Hassan HM, Aluri HS, Collinson MM, El-Shall MS (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1(19):2804–2809. doi:10.1021/jz1011143

    Article  CAS  Google Scholar 

  • Anastas PT, Kirchhoff MM, Williamson TC (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A-Gen 221(1):3–13. doi:10.1016/S0926-860X(01)00793-1

    Article  CAS  Google Scholar 

  • Behnajady MA, Modirshahla N (2006) Nonlinear regression analysis of kinetics of the photocatalytic decolorization of an azo dye in aqueous TiO2 slurry. Photochem Photobiol Sci 5(11):1078–1081. doi:10.1039/B610574B

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik T, Kundu MK, Barman S (2015) Ultra small gold nanoparticles–graphitic carbon nitride composite: an efficient catalyst for ultrafast reduction of 4-nitrophenol and removal of organic dyes from water. RSC Adv. 5(48):38760−38773. doi: 10.1039/C5RA04913J

    Google Scholar 

  • Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291. doi:10.1126/science.1198258

    Article  CAS  PubMed  Google Scholar 

  • Bumajdad A, Madkour M (2014) Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Phys Chem Chem Phys 16(16):7146–7158. doi:10.1039/C3CP54411G

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, He T, Zhao L, Wang E, Yang W, Cao Y (2009) Structure and phase transition behavior of Sn4+ doped TiO2 nanoparticles. J Phys Chem C 113(42):18121–18124. doi:10.1021/jp9069288

    Article  CAS  Google Scholar 

  • Chen Z, Fang L, Dong W, Zheng F, Shen M, Wang J (2014) Inverse opal structured Ag/TiO2 plasmonicphotocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. J Mater Chem A 2(3):824–832. doi:10.1039/C3TA13985A

    Article  CAS  Google Scholar 

  • Cheng H, Wang W, Huang B, Wang Z, Zhan J, Qin X et al (2013) Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. J Mater Chem A 1(24):7131–7136. doi:10.1039/C3TA10849J

    Article  CAS  Google Scholar 

  • Choi M, Shin KH, Jang J (2010) Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light. J Colloid Interface Sci 341(1):83–87. doi:10.1016/j.jcis.2009.09.037

    Article  CAS  PubMed  Google Scholar 

  • Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8(2):95–103. doi:10.1038/nphoton.2013.238

    Article  CAS  Google Scholar 

  • Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M et al (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041. doi:10.1021/ja305603t

    Article  CAS  PubMed  Google Scholar 

  • Diallo MS, Savage N (2005) Nanoparticles and water quality. J Nanopart Res 7(4):325–330. doi:10.1007/s11051-005-8543-x

    Article  CAS  Google Scholar 

  • Ding Z, Lu G, Greenfield P (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104(19):4815–4820. doi:10.1021/jp993819b

    Article  CAS  Google Scholar 

  • Fan W, Jewell S, She Y, Leung MK (2014) In situ deposition of Ag-Ag2S hybrid nanoparticles onto TiO2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties. Phys Chem Chem Phys 16(2):676–680. doi:10.1039/C3CP54098G

    Article  CAS  PubMed  Google Scholar 

  • Fujishima A, Honda K (1972) Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238(5385):37–38. doi:10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842. doi:10.1021/jp909284g

    Article  Google Scholar 

  • Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Colbeau-Justin C, Remita H (2013) Modification of titanium (IV) dioxide with small silver nanoparticles application in photocatalysis. J Phys Chem C 117(4):1955–1962. doi:10.1021/jp3112183

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. doi:10.1021/cr00033a004

    Article  CAS  Google Scholar 

  • Hou W, Liu Z, Pavaskar P, Hung WH, Cronin SB (2011) Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light. J Catal 277(2):149–153. doi:10.1016/j.jcat.2010.11.001

    Article  CAS  Google Scholar 

  • Kale MJ, Avanesian T, Christopher P (2014) Direct photocatalysis by plasmonic nanostructures. ACS Catal 4(1):116–128. doi:10.1021/cs400993w

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect:1823–1831. doi:10.1289/ehp.0900793

    Google Scholar 

  • Khataee A, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328(1):8–26. doi:10.1016/j.molcata.2010.05.023

    Article  CAS  Google Scholar 

  • Kim S, Choi W (2005) Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path. J Phys Chem B 109(11):5143–5149. doi:10.1021/jp045806q

    Article  CAS  PubMed  Google Scholar 

  • Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42(21):8467–8493. doi:10.1039/C3CS60043B

    Article  CAS  PubMed  Google Scholar 

  • Leong KH, Gan BL, Ibrahim S, Saravanan P (2014) Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Appl Surf Sci 319:128–135. doi:10.1016/j.apsusc.2014.06.153

    Article  CAS  Google Scholar 

  • Li XH, Wang X, Antonietti M (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3(6):2170–2174. doi:10.1039/C2SC20289A

    Article  CAS  Google Scholar 

  • Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921. doi:10.1038/nmat3151

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22(25):12435–12452. doi:10.1039/C2JM31218B

    Article  CAS  Google Scholar 

  • Lou Z, Huang B, Qin X, Zhang X, Wang Z, Zheng Z et al (2011) One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method. Cryst Eng Comm 13(6):1789–1793. doi:10.1039/C0CE00856G

    Article  CAS  Google Scholar 

  • Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2(1):54–75. doi:10.1039/C1CY00361E

    Article  CAS  Google Scholar 

  • Molina RA, Weinmann D, Jalabert RA (2002) Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles. Phys Rev B 65(15):155427. doi:10.1103/PhysRevB.65.155427

    Article  Google Scholar 

  • Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30(8):1121–1132. doi:10.1039/B604038C

    Article  CAS  Google Scholar 

  • Ong WJ, Gui MM, Chai SP, Mohamed AR (2013) Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv 3(14):4505–4509. doi:10.1039/C3RA00030C

    Article  CAS  Google Scholar 

  • Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580. doi:10.1039/C2CS35355E

    Article  CAS  PubMed  Google Scholar 

  • Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113(19):7985–7989. doi:10.1021/jp811377n

    Article  CAS  Google Scholar 

  • Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, DH A et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539. doi:10.1021/jp060936f

    Article  CAS  PubMed  Google Scholar 

  • Shin DO, Jeong JR, Han TH, Koo CM, Park HJ, Lim YT, Kim SO (2010) A plasmonic biosensor array by block copolymer lithography. J Mater Chem 20(34):7241–7247. doi:10.1039/C0JM01319F

    Article  CAS  Google Scholar 

  • Sim LC, Leong KH, Ibrahim S, Saravanan P (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J Mater Chem A 2(15):5315–5322. doi:10.1039/C3TA14857B

    Article  CAS  Google Scholar 

  • Su R, Bechstein R, Sø L, Vang RT, Sillassen M, Br E et al (2011) How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J Phys Chem C 115(49):24287–24292. doi:10.1021/jp2086768

    Article  CAS  Google Scholar 

  • Su K, Ai Z, Zhang L (2012) Efficient visible light-driven photocatalytic degradation of pentachlorophenol with Bi2O3/TiO2–xBx. J Phys Chem C 116(32):17118–17123. doi:10.1021/jp305432g

    Article  CAS  Google Scholar 

  • Sun L, Zhao Z, Zhou Y, Liu L (2012) Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4(2):613–620. doi:10.1039/C1NR11411E

    Article  CAS  PubMed  Google Scholar 

  • Tachikawa T, Tojo S, Fujitsuka M, Majima T (2004) Photocatalytic one-electron oxidation of biphenyl derivatives strongly coupled with the TiO2 surface. Langmuir 20(7):2753–2759. doi:10.1021/la0361262

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Jiang Z, Tay Q, Deng J, Lai Y, Gong D et al (2012a) Visible-light plasmonic photocatalyst anchored on titanate nanotubes: a novel nanohybrid with synergistic effects of adsorption and degradation. RSC Adv 2(25):9406–9414. doi:10.1039/C2RA21300A

    Article  CAS  Google Scholar 

  • Tang Y, Luo S, Teng Y, Liu C, Xu X, Zhang X, Chen L (2012b) Efficient removal of herbicide 2, 4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J Hazard Mater 241:323–330. doi:10.1016/j.jhazmat.2012.09.050

    Article  PubMed  Google Scholar 

  • Tian J, Liu S, Zhang Y, Li H, Wang L, Luo Y et al (2012) Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. Inorg Chem 51(8):4742–4746. doi:10.1021/ic300332x

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43(20):6920–6937. doi:10.1039/C4CS00180J

    Article  CAS  PubMed  Google Scholar 

  • Vinodgopal K, Neppolian, B, Lightcap IV, Grieser, F., Ashokkumar, M., & Kamat, P. V. (2010). Sonolytic design of graphene− Au nanocomposites. simultaneous and sequential reduction of graphene oxide and Au (III). J Phys Chem Lett 1(13):1987-1993. doi:10.1021/jz1006093

    Google Scholar 

  • Wang Y, Hang K, Anderson NA, Lian T (2003) Comparison of electron transfer dynamics in molecule-to-nanoparticle and intramolecular charge transfer complexes. J Phys Chem B 107(35):9434–9440. doi:10.1021/jp034935o

    Article  CAS  Google Scholar 

  • Wang Z, Huang B, Dai Y, Qin X, Zhang X, Wang P et al (2009) Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method. J Phys Chem C 113(11):4612–4617. doi:10.1021/jp8107683

    Article  CAS  Google Scholar 

  • Wang P, Huang B, Zhang X, Qin X, Dai Y, Wang Z, Lou Z (2011) Highly efficient visible light plasmonic photocatalysts Ag@ Ag (Cl, Br) and Ag@ AgCl-AgI. Chem Cat Chem 3(2):360–364. doi:10.1002/cctc.201000380

    Google Scholar 

  • Wang Z, Liu J, Chen W (2012) Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability. Dalton T 41(16):4866–4870. doi:10.1039/C2DT12089E

    Article  CAS  Google Scholar 

  • Wang Z, Liu Y, Huang B, Dai Y, Lou Z, Wang G et al (2014a) Progress on extending the light absorption spectra of photocatalysts. Phys Chem Chem Phys 16(7):2758–2774. doi:10.1039/C3CP53817F

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z et al (2014b) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15):5234–5244. doi:10.1039/C4CS00126E

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Ding H, Shan Y (2011) Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite. Nanoscale 3:4411–4417. doi:10.1039/C1NR10604J

    Article  CAS  PubMed  Google Scholar 

  • White TP, Catchpole KR (2012) Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl Phys Lett 101(7):073905. doi:10.1063/1.4746425

    Article  Google Scholar 

  • Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7):1487–1491. doi:10.1021/nn800251f

    Article  CAS  PubMed  Google Scholar 

  • Xiang Q, Yu J, Cheng B, Ong H (2010) Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. Chem Asian J 5(6):1466–1474. doi:10.1002/asia.200900695

    CAS  PubMed  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2011) Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13(11):4853–4861. doi:10.1039/C0CP01459A

    Article  CAS  PubMed  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41(2):782–796. doi:10.1039/C1CS15172J

    Article  CAS  PubMed  Google Scholar 

  • Xiao F (2012) Self-assembly preparation of gold nanoparticles-TiO2 nanotube arrays binary hybrid nanocomposites for photocatalytic applications. J Mater Chem 22(16):7819–7830. doi:10.1039/C2JM16452C

    Article  CAS  Google Scholar 

  • Xiao M, Jiang R, Wang F, Fang C, Wang J, Jimmy CY (2013) Plasmon-enhanced chemical reactions. J Mater Chem A 1:5790–5805. doi:10.1039/C3TA01450A

    Article  CAS  Google Scholar 

  • Xie Y, Kum J, Zhao X, Cho SO (2011) Enhanced photocatalytic activity of mesoporous SN-codoped TiO2 loaded with Ag nanoparticles. Semicond Sci Technol 26(8):085037. doi:10.1088/0268-1242/26/8/085037

    Article  Google Scholar 

  • Yang DJ, Park H, Cho SJ, Kim HG, Choi WY (2008) TiO2-nanotube-based dye-sensitized solar cells fabricated by an efficient anodic oxidation for high surface area. J Phys Chem Solids 69(5):1272–1275. doi:10.1016/j.jpcs.2007.10.107

    Article  CAS  Google Scholar 

  • Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B Environ 90(3):595–602. doi:10.1016/j.apcatb.2009.04.021

    Article  CAS  Google Scholar 

  • Zhang H, Lv X, Li Y, Wang Y, Li J (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386. doi:10.1021/nn901221k

    Article  Google Scholar 

  • Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19):5792–5813. doi:10.1039/C2NR31480K

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401. doi:10.1088/0034-4885/76/4/046401

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to University of Malaya Research Grant (RG167/12SUS & RP019B-13AET), University of Malaya Postgraduate Research Grant (PG022-2013A & PV106/2012A) and the Ministry of Education Malaysia Fundamental Research Grant (FP051-2013B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanan Pichiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leong, K.H., Sim, L.C., Pichiah, S., Ibrahim, S. (2016). Light Driven Nanomaterials for Removal of Agricultural Toxins. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 3. Sustainable Agriculture Reviews, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-48009-1_9

Download citation

Publish with us

Policies and ethics