Skip to main content

Nivolumab

  • Chapter
  • First Online:
Immunotherapy of Melanoma
  • 1043 Accesses

Abstract

Nivolumab belongs to the class of check point blockers that showed enormous potential in the treatment of melanoma. Its use as a monotherapy was approved by US FDA for the treatment of metastatic melanoma in December 2014 and its combination with ipilimumab was approved in September 2015. Nivolumab is a monoclonal antibody against the PD-1 receptor. PD-1 belongs to the immunoglobulin superfamily of proteins and is expressed on the cell surface of T- and B-cells in response to inflammatory signals in the tumor microenvironment. Upon binding with its ligands, PD-L1 (B7-H1) or PD-L2 (B7-DC), it generates a ‘negative’ signal inside T-cells and results in inhibition of T-cell functions. The current chapter describes the PD-1 receptors and the clinical potential of PD-1 blocker nivolumab. In the introduction section of the chapter, the discovery of PD-1 receptors and the phenotype of PD-1 deficient mice (Pdcd / mice) are described. Next, the structure of PD-1 receptor, its biology and the signaling events that follow the activation of PD-1 receptor are explained. After giving a brief description of Opdivo, the marketed formulation of nivolumab, its clinical pharmacology and mechanism of action at cellular level is described. The details of clinical trials that tested the use of nivolumab in melanoma patients and the adverse effects, drug interactions as well as contraindications of nivolumab are then discussed. In the end, the limitations of using nivolumab are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francisco, L. M., Sage, P. T., & Sharpe, A. H. (2010). The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236, 219–242. doi:10.1111/j.1600-065X.2010.00923.x IMR923 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yao, S., Zhu, Y., & Chen, L. (2013). Advances in targeting cell surface signalling molecules for immune modulation. Nature Reviews Drug Discovery, 12(2), 130–146. doi:10.1038/nrd3877 nrd3877 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Intlekofer, A. M., & Thompson, C. B. (2013). At the bench: Preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. Journal of Leukocyte Biology, 94(1), 25–39. doi:10.1189/jlb.1212621 jlb.1212621 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weber, J. (2010). Immune checkpoint proteins: A new therapeutic paradigm for cancer–preclinical background: CTLA-4 and PD-1 blockade. Seminars in Oncology, 37(5), 430–439. doi:10.1053/j.seminoncol.2010.09.005. S0093-7754(10)00159-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  5. Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO Journal, 11(11), 3887–3895.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Okazaki, T., Iwai, Y., & Honjo, T. (2002). New regulatory co-receptors: Inducible co-stimulator and PD-1. Current Opinion in Immunology, 14(6), 779–782. S0952791502003989 [pii].

    Article  CAS  PubMed  Google Scholar 

  7. Okazaki, T., & Honjo, T. (2007). PD-1 and PD-1 ligands: From discovery to clinical application. International Immunology, 19(7), 813–824. doi:10.1093/intimm/dxm057 dxm057 [pii].

    Article  CAS  PubMed  Google Scholar 

  8. Shinohara, T., Taniwaki, M., Ishida, Y., Kawaichi, M., & Honjo, T. (1994). Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 23(3), 704–706. doi:10.1006/geno.1994.1562. S0888-7543(84)71562-X [pii].

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura, H., Minato, N., Nakano, T., & Honjo, T. (1998). Immunological studies on PD-1 deficient mice: Implication of PD-1 as a negative regulator for B cell responses. International Immunology, 10(10), 1563–1572.

    Article  CAS  PubMed  Google Scholar 

  10. Nishimura, H., Nose, M., Hiai, H., Minato, N., & Honjo, T. (1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 11(2), 141–151. S1074-7613(00)80089-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  11. Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., et al. (2001). Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 291(5502), 319–322. doi:10.1126/science.291.5502.319 291/5502/319 [pii].

    Article  CAS  PubMed  Google Scholar 

  12. Okazaki, T., Tanaka, Y., Nishio, R., Mitsuiye, T., Mizoguchi, A., Wang, J., et al. (2003). Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nature Medicine, 9(12), 1477–1483. doi:10.1038/nm955 nm955 [pii].

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J., Yoshida, T., Nakaki, F., Hiai, H., Okazaki, T., & Honjo, T. (2005). Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11823–11828. doi:10.1073/pnas.0505497102 0505497102 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. Journal of Experimental Medicine, 192(7), 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carter, L., Fouser, L. A., Jussif, J., Fitz, L., Deng, B., Wood, C. R., et al. (2002). PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. European Journal of Immunology, 32(3), 634–643. doi:10.1002/1521-4141(200203)32:3<634:AID-IMMU634>3.0.CO;2-9 [pii] 10.1002/1521-4141(200203)32:3<634:AID-IMMU634>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  16. Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., et al. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077), 682–687. doi:10.1038/nature04444 nature04444 [pii].

    Article  CAS  PubMed  Google Scholar 

  17. Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., et al. (2006). PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature, 443(7109), 350–354. doi:10.1038/nature05115 nature05115 [pii].

    Article  CAS  PubMed  Google Scholar 

  18. Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E., et al. (2009). Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 114(8), 1537–1544. doi:10.1182/blood-2008-12-195792 blood-2008-12-195792 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zou, W., & Chen, L. (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nature Reviews Immunology, 8(6), 467–477. doi:10.1038/nri2326 nri2326 [pii].

    Article  CAS  PubMed  Google Scholar 

  20. Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine, 8(8), 793–800. doi:10.1038/nm730 nm730 [pii].

    CAS  PubMed  Google Scholar 

  21. Thompson, R. H., Gillett, M. D., Cheville, J. C., Lohse, C. M., Dong, H., Webster, W. S., et al. (2004). Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17174–17179. doi:10.1073/pnas.0406351101 0406351101 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dorfman, D. M., Brown, J. A., Shahsafaei, A., & Freeman, G. J. (2006). Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. American Journal of Surgical Pathology, 30(7), 802–810. doi:10.1097/01.pas.0000209855.28282.ce 00000478-200607000-00003 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, J., Hamrouni, A., Wolowiec, D., Coiteux, V., Kuliczkowski, K., Hetuin, D., et al. (2007). Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood, 110(1), 296–304. doi:10.1182/blood-2006-10-051482 blood-2006-10-051482 [pii].

    Article  CAS  PubMed  Google Scholar 

  24. Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., & Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 99(19), 12293–12297. doi:10.1073/pnas.192461099 192461099 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishida, M., Iwai, Y., Tanaka, Y., Okazaki, T., Freeman, G. J., Minato, N., et al. (2002). Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunology Letters, 84(1), 57–62. S0165247802001426 [pii].

    Article  CAS  PubMed  Google Scholar 

  26. Hirano, F., Kaneko, K., Tamura, H., Dong, H., Wang, S., Ichikawa, M., et al. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Research, 65(3), 1089–1096 65/3/1089 [pii].

    CAS  PubMed  Google Scholar 

  27. Terme, M., Ullrich, E., Aymeric, L., Meinhardt, K., Desbois, M., Delahaye, N., et al. (2011). IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Research, 71(16), 5393–5399. doi:10.1158/0008-5472.CAN-11-0993 0008-5472.CAN-11-0993 [pii].

    Article  CAS  PubMed  Google Scholar 

  28. Rotte, A., Bhandaru, M., Zhou, Y., & McElwee, K. J. (2015). Immunotherapy of melanoma: Present options and future promises. Cancer and Metastasis Reviews, 34(1), 115–128. doi:10.1007/s10555-014-9542-0.

    Article  CAS  PubMed  Google Scholar 

  29. FDA approves Keytruda for advanced melanoma. (2014, September 4). FDA News Release.

    Google Scholar 

  30. FDA approves Opdivo for advanced melanoma. (2014, December 22). FDA News Release.

    Google Scholar 

  31. Nivolumab in combination with ipilimumab. (2015, September 30). FDA Approved drugs database.

    Google Scholar 

  32. Homet Moreno, B., Parisi, G., Robert, L., & Ribas, A. (2015). Anti-PD-1 therapy in melanoma. Seminars in Oncology, 42(3), 466–473. doi:10.1053/j.seminoncol.2015.02.008 S0093-7754(15)00024-X [pii].

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Schwartz, J. C., Guo, X., Bhatia, S., Cao, E., Lorenz, M., et al. (2004). Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 20(3), 337–347. S1074761304000512 [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Stamper, C. C., Zhang, Y., Tobin, J. F., Erbe, D. V., Ikemizu, S., Davis, S. J., et al. (2001). Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 410(6828), 608–611. doi:10.1038/35069118 35069118 [pii].

    Article  CAS  PubMed  Google Scholar 

  35. Long, E. O. (1999). Regulation of immune responses through inhibitory receptors. Annual Review of Immunology, 17, 875–904. doi:10.1146/annurev.immunol.17.1.875.

    Article  CAS  PubMed  Google Scholar 

  36. Riley, J. L. (2009). PD-1 signaling in primary T cells. Immunological Reviews, 229(1), 114–125. doi:10.1111/j.1600-065X.2009.00767.x IMR767 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keir, M. E., Butte, M. J., Freeman, G. J., & Sharpe, A. H. (2008). PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 26, 677–704. doi:10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  38. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T., & Honjo, T. (2001). PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13866–13871. doi:10.1073/pnas.231486598 231486598 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dariavach, P., Mattei, M. G., Golstein, P., & Lefranc, M. P. (1988). Human Ig superfamily CTLA-4 gene: Chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. European Journal of Immunology, 18(12), 1901–1905. doi:10.1002/eji.1830181206.

    Article  CAS  PubMed  Google Scholar 

  40. Nielsen, C., Ohm-Laursen, L., Barington, T., Husby, S., & Lillevang, S. T. (2005). Alternative splice variants of the human PD-1 gene. Cellular Immunology, 235(2), 109–116. doi:10.1016/j.cellimm.2005.07.007. S0008-8749(05)00174-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  41. Wan, B., Nie, H., Liu, A., Feng, G., He, D., Xu, R., et al. (2006). Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. The Journal of Immunology, 177(12), 8844–8850. 177/12/8844 [pii].

    Article  CAS  PubMed  Google Scholar 

  42. Pentcheva-Hoang, T., Chen, L., Pardoll, D. M., & Allison, J. P. (2007). Programmed death-1 concentration at the immunological synapse is determined by ligand affinity and availability. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17765–17770. doi:10.1073/pnas.0708767104 0708767104 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parry, R. V., Chemnitz, J. M., Frauwirth, K. A., Lanfranco, A. R., Braunstein, I., Kobayashi, S. V., et al. (2005). CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular Biology, 25(21), 9543–9553. doi:10.1128/MCB.25.21.9543-9553.2005 25/21/9543 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheppard, K. A., Fitz, L. J., Lee, J. M., Benander, C., George, J. A., Wooters, J., et al. (2004). PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Letters, 574(1–3), 37–41. doi:10.1016/j.febslet.2004.07.083 S0014579304009779 [pii].

    Article  CAS  PubMed  Google Scholar 

  45. Okazaki, T., & Honjo, T. (2006). The PD-1-PD-L pathway in immunological tolerance. Trends in Immunology, 27(4), 195–201. doi:10.1016/j.it.2006.02.001. S1471-4906(06)00048-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  46. Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H., & Riley, J. L. (2004). SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. The Journal of Immunology, 173(2), 945–954.

    Article  CAS  PubMed  Google Scholar 

  47. Frauwirth, K. A., Riley, J. L., Harris, M. H., Parry, R. V., Rathmell, J. C., Plas, D. R., et al. (2002). The CD28 signaling pathway regulates glucose metabolism. Immunity, 16(6), 769–777. S1074761302003230 [pii].

    Article  CAS  PubMed  Google Scholar 

  48. Malek, T. R., & Castro, I. (2010). Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity, 33(2), 153–165. doi:10.1016/j.immuni.2010.08.004 S1074-7613(10)00287-6 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blair, P. J., Riley, J. L., Levine, B. L., Lee, K. P., Craighead, N., Francomano, T., et al. (1998). CTLA-4 ligation delivers a unique signal to resting human CD4 T cells that inhibits interleukin-2 secretion but allows Bcl-X(L) induction. The Journal of Immunology, 160(1), 12–15.

    CAS  PubMed  Google Scholar 

  50. Nurieva, R., Thomas, S., Nguyen, T., Martin-Orozco, N., Wang, Y., Kaja, M. K., et al. (2006). T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO Journal, 25(11), 2623–2633. doi:10.1038/sj.emboj.7601146 7601146 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saunders, P. A., Hendrycks, V. R., Lidinsky, W. A., & Woods, M. L. (2005). PD-L2:PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion. European Journal of Immunology, 35(12), 3561–3569. doi:10.1002/eji.200526347.

    Article  CAS  PubMed  Google Scholar 

  52. Bennett, F., Luxenberg, D., Ling, V., Wang, I. M., Marquette, K., Lowe, D., et al. (2003). Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: Attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. The Journal of Immunology, 170(2), 711–718.

    Article  CAS  PubMed  Google Scholar 

  53. Riley, J. L., Mao, M., Kobayashi, S., Biery, M., Burchard, J., Cavet, G., et al. (2002). Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11790–11795. doi:10.1073/pnas.162359999 162359999 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Opdivo package insert. Product information: Bristol-Myers Squibb.

    Google Scholar 

  55. McDermott, D. F., & Atkins, M. B. (2013). PD-1 as a potential target in cancer therapy. Cancer Med, 2(5), 662–673. doi:10.1002/cam4.106.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Linsley, P. S., Bradshaw, J., Greene, J., Peach, R., Bennett, K. L., & Mittler, R. S. (1996). Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity, 4(6), 535–543. S1074-7613(00)80480-X [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2012). Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24(2), 207–212. doi:10.1016/j.coi.2011.12.009 S0952-7915(11)00184-1 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wintterle, S., Schreiner, B., Mitsdoerffer, M., Schneider, D., Chen, L., Meyermann, R., et al. (2003). Expression of the B7-related molecule B7-H1 by glioma cells: A potential mechanism of immune paralysis. Cancer Research, 63(21), 7462–7467.

    CAS  PubMed  Google Scholar 

  59. Strome, S. E., Dong, H., Tamura, H., Voss, S. G., Flies, D. B., Tamada, K., et al. (2003). B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Research, 63(19), 6501–6505.

    CAS  PubMed  Google Scholar 

  60. Wu, C., Zhu, Y., Jiang, J., Zhao, J., Zhang, X. G., & Xu, N. (2006). Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochemica, 108(1), 19–24. doi:10.1016/j.acthis.2006.01.003 S0065-1281(06)00014-6 [pii].

    Article  PubMed  Google Scholar 

  61. Inman, B. A., Sebo, T. J., Frigola, X., Dong, H., Bergstralh, E. J., Frank, I., et al. (2007). PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: Associations with localized stage progression. Cancer, 109(8), 1499–1505. doi:10.1002/cncr.22588.

    Article  CAS  PubMed  Google Scholar 

  62. Nakanishi, J., Wada, Y., Matsumoto, K., Azuma, M., Kikuchi, K., & Ueda, S. (2007). Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunology, Immunotherapy, 56(8), 1173–1182. doi:10.1007/s00262-006-0266-z.

    Article  CAS  PubMed  Google Scholar 

  63. Hamanishi, J., Mandai, M., Iwasaki, M., Okazaki, T., Tanaka, Y., Yamaguchi, K., et al. (2007). Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3360–3365. doi:10.1073/pnas.0611533104 0611533104 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, W., Lau, R., Yu, D., Zhu, W., Korman, A., & Weber, J. (2009). PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. International Immunology, 21(9), 1065–1077. doi:10.1093/intimm/dxp072 dxp072 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Iwai, Y., Terawaki, S., & Honjo, T. (2005). PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. International Immunology, 17(2), 133–144. doi:10.1093/intimm/dxh194 dxh194 [pii].

    Article  CAS  PubMed  Google Scholar 

  66. Fourcade, J., Kudela, P., Sun, Z., Shen, H., Land, S. R., Lenzner, D., et al. (2009). PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. The Journal of Immunology, 182(9), 5240–5249. doi:10.4049/jimmunol.0803245 182/9/5240 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T., et al. (2010). Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7875–7880. doi:10.1073/pnas.1003345107 1003345107 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marquez-Rodas, I., Cerezuela, P., Soria, A., Berrocal, A., Riso, A., Gonzalez-Cao, M., et al. (2015). Immune checkpoint inhibitors: Therapeutic advances in melanoma. Annals of Translational Medicine, 3(18), 267. doi:10.3978/j.issn.2305-5839.2015.10.27 atm-03-18-267 [pii].

    PubMed  PubMed Central  Google Scholar 

  69. Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., Picus, J., Sharfman, W. H., et al. (2010). Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 28(19), 3167–3175. doi:10.1200/JCO.2009.26.7609 JCO.2009.26.7609 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443–2454. doi:10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weber, J. S., Kudchadkar, R. R., Yu, B., Gallenstein, D., Horak, C. E., Inzunza, H. D., et al. (2013). Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. Journal of Clinical Oncology, 31(34), 4311–4318. doi:10.1200/JCO.2013.51.4802 JCO.2013.51.4802 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weber, J. S., D’Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., et al. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16(4), 375–384. doi:10.1016/S1470-2045(15)70076-8. S1470-2045(15)70076-8 [pii].

    Article  CAS  PubMed  Google Scholar 

  73. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. New England Journal of Medicine, 372(4), 320–330. doi:10.1056/NEJMoa1412082.

    Article  CAS  PubMed  Google Scholar 

  74. Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. New England Journal of Medicine, 369(2), 122–133. doi:10.1056/NEJMoa1302369.

    Article  CAS  PubMed  Google Scholar 

  75. Postow, M. A., Chesney, J., Pavlick, A. C., Robert, C., Grossmann, K., McDermott, D., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. New England Journal of Medicine, 372(21), 2006–2017. doi:10.1056/NEJMoa1414428.

    Article  PubMed  Google Scholar 

  76. Topalian, S. L., Sznol, M., McDermott, D. F., Kluger, H. M., Carvajal, R. D., Sharfman, W. H., et al. (2014). Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Journal of Clinical Oncology, 32(10), 1020–1030. doi:10.1200/JCO.2013.53.0105 JCO.2013.53.0105 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Freeman-Keller, M., Kim, Y., Cronin, H., Richards, A., Gibney, G., & Weber, J. S. (2015). Nivolumab in resected and unresectable metastatic melanoma: Characteristics of immune-related adverse events and association with outcomes. Clinical Cancer Research,. doi:10.1158/1078-0432.CCR-15-1136 1078-0432.CCR-15-1136 [pii].

    PubMed  Google Scholar 

  78. Chustecka, Z. (2015). New immunotherapy costing $1 million a year.

    Google Scholar 

  79. Eijsden, P. (2015). Fate of new cancer drug is uncertain in Netherlands, as institute deems it too costly. BMJ, 351, h6778.

    Article  PubMed  Google Scholar 

  80. Pharmacoeconomic evaluation of ipilimumab (Yervoy) for the treatment of advanced (unresectable or metastatic) melanoma in adult patients who have received prior therapy. September 2011 (2011). In N. C. f. Pharmacoeconomics (Ed.). Ireland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Rotte .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Rotte, A., Bhandaru, M. (2016). Nivolumab. In: Immunotherapy of Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-48066-4_12

Download citation

Publish with us

Policies and ethics