Skip to main content

Strengthening Due to the Percolating Eutectic Microstructure in Squeeze Cast MRI230D

  • Chapter
Magnesium Technology 2014

Abstract

A 3D numerical image of the percolating eutectic in a squeeze cast MRI230D was incorporated into a finite element code to assess its deformation behaviour. The modelling revealed a high structural compliance, akin to the bending-dominated behaviour of cellular foams. At yield, contribution of the 3D network to the alloy’s strength was comparable with the dispersion strengthening expected from an equivalent volume fraction of dispersed particles. Incorporating damage effects into the model indicated that due to its high compliance the percolating microstructure can be expected to keep most of its structural integrity, reinforcing the alloy without compromising the ductility, for strains above 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.H. Cáceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Mater. Sci. Eng., 402A (2005) 269–277.

    Article  Google Scholar 

  2. K.V. Yang, C.H. Caceres, A.V. Nagasekhar, M.A. Easton, Mater. Sei. Eng. A, 542 (2012) 49–55.

    Article  Google Scholar 

  3. D. Amberger, P. Eisenlohr, M. Goken, Acta Mater., 60 (2012) 2277–2289.

    Article  Google Scholar 

  4. B.S. Shin, J.W. Kwon, D.H. Bae, Met. Mater. Int., 15 (2009) 203–207.

    Article  Google Scholar 

  5. A.V. Nagasekhar, C.H. Caceres, C. Kong, Mater. Charact, 61 (2010) 1035–1042.

    Article  Google Scholar 

  6. B. Zhang, A.V. Nagasekhar, T. Sivarupan, C.H. Caceres, Adv. Eng. Mater., 10.1002/adem.201300138 (2013).

    Google Scholar 

  7. Y. Terada, N. Ishimatsu, Y. Mori, T. Sato, Mater. Trans. (JIM), 46 (2005) 145–147.

    Article  Google Scholar 

  8. B. Cantor, G.A. Chadwick, J. Mater. Sci., 10 (1975) 578–588.

    Article  Google Scholar 

  9. M. Sahoo, R.W. Smith, Metal Sci., 9 (1975) 217–222.

    Article  Google Scholar 

  10. D. Stalling, M. Westerhoff, H.-C. Hege, in, 1997.

    Google Scholar 

  11. K. Ozturk, Y. Zhong, A.A. Luo, Z. Liu, JOM, (2003) 40–44.

    Google Scholar 

  12. H. Anton, P.C. Schmidt, Intermetallics, 5 (1997) 449–465.

    Article  Google Scholar 

  13. T. Sumitomo, C.H. Cáceres, M. Veidt, J. Light Metals, 2 (2002) 49–56.

    Article  Google Scholar 

  14. C.H. Cáceres, P. Lukác, Philos Mag A, 88, http://dx.doi.org/10.1080/14786430801968611 (2008) 977–989.

  15. D. Hull, An introduction to composite materials, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  16. O.C. Zienkiewicz, R.L. Taylor, The finite element method, McGraw-Hill Book Company (1989).

    Google Scholar 

  17. R.W. Rice, J. Mater Sci., 40 (2005) 983–989.

    Article  Google Scholar 

  18. G. Bruno, A.M. Efremov, A.N. Levandovskyi, B. Clausen, J. Mater. Sci., 46 (2011) 161–173.

    Article  Google Scholar 

  19. R.L. coble, W.D. Kingery, J. Amer. Ceram. Soc, 39 (1956) 377–385.

    Article  Google Scholar 

  20. L.J. Gibson, Ashby M. F., Proc. R. Soc. Lond. A, 382 (1982) 43–59.

    Article  Google Scholar 

  21. S.K. Maiti, L.J. Gibson, M.F. Ashby, Acta Metall., 32 (1984) 1963–1975.

    Article  Google Scholar 

  22. A.P. Roberts, E.J. Garboczi, J. Am. Ceram. Soc, 83 (2000) 3041–3048.

    Article  Google Scholar 

  23. M.F. Ashby, Y.J.M. Brechet, Acta Mater., 51 (2003) 5801–5821.

    Article  Google Scholar 

  24. L.M. Brown, W.M. Stobbs, Phil. Mag., 23 (1971) 1185–1199.

    Article  Google Scholar 

  25. L.M. Brown, W.M. Stobbs, Phil. Mag., 23 (1971) 1201–1233.

    Article  Google Scholar 

  26. C.H. Cáceres, J.R. Griffiths, P. Reiner, Acta Mater., 44 (1996) 15–23.

    Article  Google Scholar 

  27. J.D. Embury, Metall.Trans., 16A (1985) 2191–2200.

    Article  Google Scholar 

  28. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, J. Root, Phil. Mag., 79 (1999) 1671–1696.

    Article  Google Scholar 

  29. C.H. Cáceres, Alum. Trans., 1 (1999) 1–13.

    Google Scholar 

  30. Y. Brechet, J.D. Embury, S. Tao, L. Luo, Acta Metall. Mater., 39 (1991) 1781–1786.

    Article  Google Scholar 

  31. C.H. Cáceres, J.R. Griffiths, Acta Mater., 44 (1996) 25–33.

    Article  Google Scholar 

  32. P.J. Withers, W.M. Stobbs, O.B. Pedersen, Acta Metall., 37 (1989) 3061–3084.

    Article  Google Scholar 

  33. L.M. Brown, D.R. Clarke, Acta Metallurgica, 23 (1975) 821–830.

    Article  Google Scholar 

  34. L.M. Brown, D.R. Clarke, Acta Metallurgica, 25 (1977) 563–570.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Cáceres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Zhang, B., Nagasekhar, A.V., Cáceres, C.H. (2014). Strengthening Due to the Percolating Eutectic Microstructure in Squeeze Cast MRI230D. In: Alderman, M., Manuel, M.V., Hort, N., Neelameggham, N.R. (eds) Magnesium Technology 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48231-6_40

Download citation

Publish with us

Policies and ethics