Skip to main content

Optimization of Anodization and Annealing Condition Enhances TiO2 Nanotubular Surface Hydrophilicity

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition

Abstract

In this study anodization and annealing condition are optimized to fabricate nanotubular surface which is able to maintain its hydrophilicity over time — anti-aging surface. Our results indicate that anodization voltage and annealing temperature affect surface ability to maintain its hydrophilicity. Water contact angle measurements show hydrophilicty is sharply decreased after annealing regardless of annealing and anodization conditions. Non-anodized and 20 V anodized samples lose their hydrophilicity after 11 days of aging in air, while 60 V anodized samples are able to maintain their hydrophilicity after this period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster TJ, E.J., Increased osteoblast adhesion on nanophase metals: Ti, Ti6A14V, and CoCrMo. Biomaterials, 2004.

    Google Scholar 

  2. Rajyalakshmi A, E.B., Balasubramanian K, Webster TJ., Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Int J Nanomedicine, 2011.

    Google Scholar 

  3. Yao C, P.V., McKenzie JL, et al., Anodized Ti and Ti6A14V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion. J Biomed Nanotechnol., 2005.

    Google Scholar 

  4. Tsuchiya H, M.J., Muller L, et al., Hydroxyapatite growth on anodic TiO2 nanotubes. J Biomed Mater Res A, 2006.

    Google Scholar 

  5. Oh S, F.R., Daraio C, Chen L, Jin S., Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 2005.

    Google Scholar 

  6. K.S. Brammer, S.O., C.J. Cobb, L.M. Bjursten, H. van der Heyde, S. Jin, Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Acta Biomater., 2009.

    Google Scholar 

  7. Von Wilmowsky C, B.S., Roedl S, et al. , The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Clin Oral Implants Res. , 2012.

    Google Scholar 

  8. A. Simchi, E.T., F. Pishbin, A.R. Boccaccini, Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 2011.

    Google Scholar 

  9. Carmen Giordano, E.S., Lia Rimondini, Maria Pia Pedeferri, Livia Visai, Alberto Cigada, Roberto Chies, Electrochemically induced anatase inhibits bacterial colonization on Titanium Grade 2 and Ti6A14V alloy for dental and orthopedic devices. Colloids and Surfaces B: Biointerfaces, 2011.

    Google Scholar 

  10. A.W. Tan, e.a., Review of titania nanotubes: Fabrication and cellular response. Ceram. Int., 2012.

    Google Scholar 

  11. Massia, S.P., Cell-extracellular matrix interactions relevant to vascular tissue engineering. Tissue Engineering Prosthetic Vascular Grafts, 1999.

    Google Scholar 

  12. W.Q. Yu, Y.L.Z., X.Q. Jiang, F.Q. Zhang, In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Dis., 2010.

    Google Scholar 

  13. S. Oh, S.J., Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater. Sci. Eng. , 2006.

    Google Scholar 

  14. 28 J. Park, S.B., K. von der Mark, P. Schmuki, Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett., 2007.

    Google Scholar 

  15. Mazare, A.D., M.; Ionita, D.; et al, Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry, 2012.

    Google Scholar 

  16. Y. Bai, I.S.P., H.H. Park, M.H. Lee, T.S. Bae, W. Duncan, M. Swain, The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surf. Interf. Analysis 2011.

    Google Scholar 

  17. Lingzhou Zhao, S.M., Paul K. Chu, Yumei Zhang, Zhifen Wu, The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 2010.

    Google Scholar 

  18. Ling Gao, B.F., Jianxin Wang, Xiong Lu, Dali Liu, Shuxin Qu, Jie Weng, Micro/Nanostructural Porous Surface on Titanium and Bioactivity. Journal of Biomedical Materials Research, 2008.

    Google Scholar 

  19. Dong Hwan Shin, T.S., Chang Kyoung Choi, Seong-Hyuk Leeand Craig Friedrich, Wettability changes of TiO2 nanotube surfaces. Nanotechnology, 2011.

    Google Scholar 

  20. Macak, J.M., Tsuchiya, H., Taveira, L., Ghicov, A., Schmuki, P., Self organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions Journal of Biomedical Materials Research, 2005.

    Google Scholar 

  21. Velten, D., et al., Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. Journal of Biomedical Materials Research, 2002. 59(1): p. 18–28.

    Article  Google Scholar 

  22. Kluson, P., et al., Partial photocatalytic oxidation of cyclopentene over titanium(IV) oxide. Journal of Molecular Catalysis A: Chemical, 2005. 242(1–2): p. 62–67.

    Article  Google Scholar 

  23. Woo, S., et al., Effect of thermal treatment on the aluminum hydroxide nanofibers synthesized by electrolysis of Al plates. Microelectronic Engineering, 2012. 89(0): p. 89–91.

    Article  Google Scholar 

  24. Nguyen, Q.T., J.N. Kidder Jr, and S.H. Ehrman, Hybrid gas-to-particle conversion and chemical vapor deposition for the production of porous alumina films. Thin Solid Films, 2002. 410(1–2): p. 42–52.

    Article  Google Scholar 

  25. Dai, H.-B., et al., Hydrogen generation from coupling reactions of sodium borohydride and aluminum powder with aqueous solution of cobalt chloride. Catalysis Today, 2011. 170(1): p. 50–55.

    Article  Google Scholar 

  26. Riesgraf, D.A. and M.L. May, Infrared Spectra of Aluminum Hydroxide Chlorides. Appl. Spectrosc., 1978. 32(4): p. 362–366.

    Article  Google Scholar 

  27. Dhonge, B.P., et al., Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films. Applied Surface Science, 2011. 258(3): p. 1091–1096.

    Article  Google Scholar 

  28. Yoshiya KERA, S.T.a.K.H., Infrared Spectra of Surface V=0 Bond of Vanadium Pentoxide. Short Communication, 1967. 40(10): p. 1.

    Google Scholar 

  29. Batur Ercan, E.T., Ece Alpaslan and Thomas J Webster, Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology, 2011.

    Google Scholar 

  30. NaoyaMasahashi, Y., Satoshi Semboshi, Kazuyo Ohmura, Shuji Hanada, Photo-induced properties of anodic oxide films on Ti6A14V. Thin Solid Films, 2012.

    Google Scholar 

  31. Ryo Jimbo, T.S., Koumei Baba, Tadafumi Kurogi, Yasuaki Shibata, Mitsuru Atsuta, Enhanced Initial Cell Responses to Chemically Modified Anodized Titanium. Clinical Implant Dentistry and Related Research, 2008.

    Google Scholar 

  32. Oh S, B.K.S., Li Y S J, Teng D Y, Engler A J, Chien S and Jin S H, Reply to von der Mark et al: Looking further into the effects of nanotube dimension on stem cell fate. Proc. Natl Acad. Sci. USA, 2009.

    Google Scholar 

  33. Oh S, B.K.S., Li Y S J, Teng D, Engler A J, Chien S and Jin S, Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl Acad. Sci. USA, 2009.

    Google Scholar 

  34. J. Park, S.B., K. v.d. Mark, P. Schmuki, Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Letters 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Hamlekhan, A. et al. (2014). Optimization of Anodization and Annealing Condition Enhances TiO2 Nanotubular Surface Hydrophilicity. In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_30

Download citation

Publish with us

Policies and ethics