Skip to main content

Fabrication of Gamma-Irradiated Polypropylene and AgNPs Nanocomposite Films and Their Antimicrobial Activity

  • Conference paper
TMS 2016 145th Annual Meeting & Exhibition

Abstract

Polymer nanocomposite films of polypropylene and AgNPs were prepared by melt extrusion using twin-screw extruder. These polymer nanocomposites were further modified by y-irradiation in acetylene at dose of 12.5 kGy The AgNPs (silver nanoparticles) used in this study were synthetized using sonochemical method from silver nitrate precursor. The polymer nanocomposites were evaluated using differential scanning calorimetry (DSC), X-Ray diffraction (XRD), FTIR spectroscopy and Scanning electron microscopy (SEM). We have also studied the antibacterial activity of these polymer nanocomposite films against two different groups of bacteria-Staphylococcus aureus (S. aureus; gram-positive bacteria) and Escherichia coli (E. coli; gram-negative bacteria).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. D. Castel, M. A. S. Oviedo, S. A. Liberman, R. V. B. Oliveira, R. S. Mauler, “Solvent-assisted extrusion of polypropylene/clay nanocomposites,” Journal of Applied Polymer Science, 121(2011), 389–394.

    Article  Google Scholar 

  2. A. Bouaziz, M. Jaziri, F. Dalmas, V. Massardier, “Nanocomposites of silica reinforced polypropylene: Correlation between morphology and properties,” Polymer Engineering and Science, 54(2014), 2187–2196.

    Article  Google Scholar 

  3. M. Keijo, C. Song, Radiation Processing of Polymer Materials and Its Industrial Applications, John Wiley & Sons, Inc., Hoboken & New Jersey (2012).

    Google Scholar 

  4. W. L. Oliani, D. F. Parra, L. F. C. P. Lima, A. B. Lugao, “Morphological characterization of branched PP under stretching,” Polymer Bulletin, 68(2012), 2121–2130.

    Article  Google Scholar 

  5. S. Sanchez-Valdes, “Sonochemical deposition of silver nanoparticles on linear low density polyethylene/cyclo olefin copolymer blend films,” Polymer Bulletin, 71(2014) 1611–1624.

    Article  Google Scholar 

  6. F. Furno, K. S. Morley, B. Wong, B. K. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship, H. J. Reid, “Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection?,” Journal of Antimicrobial Chemotherapy, 54(2004), 1019–1024.

    Article  Google Scholar 

  7. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, M. J. Yacaman, “The bactericidal effect of silver nanoparticles,” Nanotechnology, 16(2005), 2346–2353.

    Article  Google Scholar 

  8. E. Fages, J. Pascual, O. Fenollar, D. Garcia-Sanoguera, R. Balart, “Study of Antibacterial Properties of Polypropylene Filled With Surfactant-Coated Silver Nanoparticles,” Polymer Engineering and Science, 51(2011), 804–811.

    Article  Google Scholar 

  9. A. Gedanken, “Using sonochemistry for the fabrication of nanomaterials,” Ultrassonics sonochemistry, 11(2004), 47–55.

    Article  Google Scholar 

  10. A. Matsumoto, T. Ishikawa, T. Odani, H. Oikawa, S. Okada, H. Nakanitshi, “An organic/inorganic nanocomposite consisting of polymuconate and silver nanoparticles,” Macromolecular chemistry and physics, 207 (2006), 361–369.

    Article  Google Scholar 

  11. X. Ye, Y. Zhou, J. Chen, Y. Sun, “Deposition of silver nanoparticles on silica spheres via ultrasound irradiation”, Applied Surface Science, 253(2007), 6264–6267.

    Article  Google Scholar 

  12. A. B. Lugao, B. W. H. Artel, A. Yoshiga, L. F. C. P. Lima, D. F. Parra, J. R. Bueno, S. Liberman, M. Farrah, W. R. Terçariol, H. Otaguro, “Production of high melt strength polypropylene by gamma irradiation,” Radiation Physics and Chemistry, 76 (2007), 1691–1695.

    Article  Google Scholar 

  13. A. B. Lugao, H. Otaguro, D. F. Parra, A. Yoshiga, L. F. C. P. Lima, B. W. H. Artel, S. Liberman, “Review on the production process and uses of controlled rheology polyprop ylen e gamma r adiation versus electron beam processing,” Radiation Physic Chemistry, 76(2007), 1688–1690.

    Article  Google Scholar 

  14. W. L. Oliani, D. F. Parra, A. B. Lugao, “UV stability of HMS -PP (high melt strength polypropylene) obtained by radiation process,” Radiation Physics and Chemistry, 79(2010), 383–387.

    Article  Google Scholar 

  15. D. M. Fermino, D. F. Parra, W. L. Oliani, A. B. Lugao, F. R. V. Díaz, “HMSPP nanocomposite and Brazilian bentonite properties after gamma radiation exposure,” Radiation Physics and Chemistry, 84(2013), 176–184.

    Article  Google Scholar 

  16. JIS Z 2801:2010 (adapted). Japanese Industrial Standard. Antimicrobial Products -Test for antimicrobial activity and efficacy.

    Google Scholar 

  17. J. G. Martınez Colunga, S. Sanchez-Valdes, L. F. Ramos -d e-Valle, L. Munoz-Jimenez, E. Ramırez-Vargas, M. C. Ibarra-Alonso, T. Lozano-Ramirez, P. G. Lafleur, “Simultaneous Polypropyl ene Functionalizati on and Nanoclay Dispersio n in PP/Clay Nanocomposites using Ultrasound,” Journal of Applied Polymer Science, (2014), 40631 (1 of 8).

    Google Scholar 

  18. N. Primeau, C. Vautey, M. Langlet, “The effect of thermal annealing on aerosolgel deposited SiO2 films: a FTIR deconvolution study”, Thin Solid Films, 310(1997), 47–56.

    Article  Google Scholar 

  19. J. G. M. Colunga, S. S. Valdes, L. F. R. Valle, L. M. Jimenez, E. R. Vargas, M. C. I. Alonso, T. L. Ramirez, P. G. Lafleur, “Simultaneous Polypropylene Functionalization and Nanoclay Dispersion in PP/Clay Nanocomposites using Ultrasound,” Journal of Applied Polymer Science, 131(2014), 40631.

    Google Scholar 

  20. T. Li, S. Xiang, P. Ma, H. Bai, W. Dong, M. Chen, “Nanocomposite Hydrogel Consisting of Na-montmorillonite with Enhanced Mechanical Properties,” Journal of Polymer Science Part B: Polymer Physics, 53(2015), 1020–1026.

    Article  Google Scholar 

  21. E. V. D. G. Líbano, L. L. Y. Visconte, E. B. A. V. Pacheco, “Propriedades térmicas de compósitos de polipropileno e bentonita organofílica,” Polímeros, 22(2012), 430–435.

    Article  Google Scholar 

  22. M. M. Favaro, M. C. Branciforti, R. E. S. Bretas, “A X-ray Study of β-Phase and Molecular Orientation in Nucleated and Non-Nucleated Injection Molded Polypropylene Resins,” Materials Research, 12, 4, (2009), 455–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Oliveira Berenguer .

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Berenguer, I.O. et al. (2016). Fabrication of Gamma-Irradiated Polypropylene and AgNPs Nanocomposite Films and Their Antimicrobial Activity. In: TMS 2016 145th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48254-5_18

Download citation

Publish with us

Policies and ethics