Skip to main content

Phytoremediation of Metal- and Salt-Affected Soils

  • Chapter
  • First Online:
Bioremediation of Salt Affected Soils: An Indian Perspective

Abstract

Modern industrialization, rapid urbanization, and excessive fertilization generate huge amounts of hazardous heavy metals and harmful salts leading to various degrees of soil contamination. The metal contamination, salinity, and sodicity are the prime examples of soil pollution that contribute as potential threat to soil health. The existing conventional technologies to remediate contaminated soil based on physicochemical approaches are highly cost intensive and could upset the biological component consequently productive function of soil in a long run. The magnitude of soil contamination can be minimized through the use of viable technology by means of using suitable plant species; the approach is called phytoremediation. In the recent past, phytoremediation received great attention because of its eco-friendly and economic approaches. Several hyperaccumulator and halophyte plants are known to decontaminate the soil polluted with various hazardous metals and salts. Several heavy metals such as lead, cadmium, copper, manganese, etc. have been commonly chosen as representative metals for which their concentrations in the environment may be used as reliable indices of environmental pollution. Salinity and sodicity are described as major causes of land degradation process that retards plant growth and productivity particularly in the arid and semiarid regions. By virtue of various interactions in the process of phytoremediation and salt removal, the plants can reduce soil contamination to a great extent and re-established the productive potential of the soil. Still, there is demand of research on co-contamination of inorganic and organic contaminants and various salts by means of phytoremediation strategies or plant-rhizosphere microbe interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Kareem, A. W., & Nazzal, K. E. (2013). Phytoremediation of salt-affected soils at Al-Jazeera northern irrigation project/Nineveh/Iraq. Mesopotamia Journal of Agriculture, 41, 294–298.

    Google Scholar 

  • Abideen, Z., Ansari, R., & Khan, M. A. (2011). Halophytes: Potential source of ligno-cellulosic biomass for ethanol production. Biomass and Bioenergy, 35, 1818–1822.

    Google Scholar 

  • Adhikari, T., & Ajay, K. (2012). Phytoaccumulation and tolerance of Ricinus Communis L. to nickel. International Journal of Phytoremediation, 14, 481–492.

    Article  CAS  Google Scholar 

  • Anandhkumar, S. P. (1998). Studies of treated tannery effluent on flower crops and its impact on soil and water quality. M.Sc Thesis, Tamil Nadu Agricultural University, Coimbatore, India.

    Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Aslam, R., Bostan, N., Amen, N., Maria, M., & Safdar, W. (2011). A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plant Research, 5, 7108–7118.

    CAS  Google Scholar 

  • Brunetti, G., Farrag, K., Soler-Rovira, P., Ferrara, M., Nigro, F., & Senesi, N. (2012). The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb, Zn by three brasicaceae species from contaminated soils in Apulia region, Southern Italy. Geoderma, 170, 322–330.

    Article  CAS  Google Scholar 

  • Carillo, P., Annunziata, M. G., Pontecorvo, G., Fuggi, A., & Woodrow, P. (2011). Salinity stress and salt tolerance. In A. K. Shanker & B. Venkateswarlu (Eds.), Abiotic stress in plants—Mechanisms and adaptations (pp. 21–38). Rijeka, Croatia: In Tech.

    Google Scholar 

  • Dajic, Z. (2006). Salt stress. In K. V. Madhava Rao, A. S. Raghavendra, & K. Janardhan Reddy (Eds.), Physiology and molecular biology of stress tolerance in plant (pp. 41–99). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Dansereau, P. (1957). Biogeography: An ecological perspective. New York: Ronald Press.

    Google Scholar 

  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137, 807–818.

    Article  CAS  Google Scholar 

  • Dheri, G. S., Brar, M. S., & Malhi, S. S. (2007). Comparative phytoremediation of chromium contaminated soils by Fenugreek, Spinach, and Raya. Communications in Soil Science and Plant Analysis, 38, 1655–1672.

    Article  CAS  Google Scholar 

  • FAO. (2000). Global network on integrated soil management for sustain-able use of salt-affected soils. Rome, Italy. http://www.fao.org/ag/agl/agll/spush.

  • Flowers, T. J., & Hajibagheri, M. A. (2001). Salinity tolerance in Hordeum vulgare: Ion concentrations in root cells of cultivars differing in salt tolerance. Plant and Soil, 231, 1–9.

    Article  CAS  Google Scholar 

  • Glenn, E. P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D., et al. (2013). Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environmental and Experimental Botany, 92, 110–121.

    Article  Google Scholar 

  • Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Physiology, 31, 149–190.

    Article  CAS  Google Scholar 

  • Haan, S. D., & Lubbers, J. (1983). Microelements in potatoes under normal conditions, and as affected by micro-elements in municipal waste compost, sewage sludge and degraded materials from harbours. Rapport Institute Voor Bodemvruchtbaarheld, 83, 22.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). New York: Springer.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International. doi:10.1155/2014/589341.

    Google Scholar 

  • Jankong, P., Visoottiviseth, P., & Khokiattiwong, S. (2007). Enhanced phytoremediation of arsenic contaminated land. Chemosphere, 68, 1906–1912.

    Article  CAS  Google Scholar 

  • Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19.

    Article  Google Scholar 

  • Lee, G., Carrow, R. N., Duncan, R. R., Eiteman, M. A., & Rieger, M. W. (2008). Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environmental and Experimental Botany, 63, 19–27.

    Article  CAS  Google Scholar 

  • Li, K., & Ramakrishna, W. (2011). Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Journal of Hazardous Materials, 189, 531–539.

    Article  CAS  Google Scholar 

  • Lokhande, V. H., Nikam, T. D., & Suprasanna, P. (2009). Sesuvium portulacastrum (L.), a promising halophyte: Cultivation, utilization and distribution in India. Genetic Resources and Crop Evolution, 56, 741–747.

    Article  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009a). Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75, 719–725.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Tu, C., Zhang, W. H., Cai, Y., & Kennelley, E. D. (2001). A fern that hyper accumulates arsenic: A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009b). Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Journal of Hazardous Materials, 166, 1154–1161.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., Vicente, J. A., & Freitas, H. (2011). Inoculation of Ni resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. International Journal of Phytoremediation, 13, 126–139.

    Article  CAS  Google Scholar 

  • Magwa, M. L., Gundidza, M., Gweru, N., & Humphrey, G. (2006). Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. Journal of Ethnopharmacolgy, 103, 85–89.

    Article  CAS  Google Scholar 

  • Mandal, A., Purakayastha, T. J., Patra, A. K., & Sanyal, S. K. (2012a). Phytoremediation of arsenic contaminated soils by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. International Journal of Phytoremediation, 14, 978–995.

    Article  CAS  Google Scholar 

  • Mandal, A., Purakayastha, T. J., Patra, A. K., & Sanyal, S. K. (2012b). Phytoremediation of arsenic contaminated soils by Pteris vittata L. I. Effect on arsenic uptake and rice yield. International Journal of Phytoremediation, 14, 621–628.

    Article  CAS  Google Scholar 

  • Mandal, A., Purakayastha, T. J., & Patra, A. K. (2014). Phytoextraction of arsenic contaminated soil by Chinese brake fern (Pteris vittata): Effect on soil microbiological activities. Biology and Fertility of Soils, 50, 1247–1252.

    Article  CAS  Google Scholar 

  • Mani, D., Sharma, B., & Kumar, C. (2007). Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Bulletin of Environmental Contamination and Toxicology, 79, 71–79.

    Article  CAS  Google Scholar 

  • Marcum, K. B., & Murdoch, C. L. (1992). Salt tolerance of the coastal salt marsh grass, Sporobolus virginicus (L.) Kunth. New Phytologist, 120, 281–288.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 14, 94–104.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S., & Maiti, S. K. (2009). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8, 207–222.

    Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A. H., Seif, F., et al. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environmental and Earth Science, 62, 639–644.

    Article  CAS  Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environment Safety, 60, 324–349.

    Article  CAS  Google Scholar 

  • Purakayastha, T. J., & Chhonkar, P. K. (2010). Phytoremediation of heavy metal contaminated soil. In I. Sherameti & A. Varma (Eds.), Soil heavy metals (Vol. 19, pp. 389–430). Heidelberg, Germany: Springer.

    Chapter  Google Scholar 

  • Purakayastha, T. J., Thulasi, V., Bhadraray, S., Chhonkar, P. K., Adhikari, P. P., & Suribabu, K. (2008). Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. International Journal of Phytoremediation, 10, 63–74.

    Article  Google Scholar 

  • Qadir, M., & Oster, J. (2002). Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrigation Science, 21, 91–101.

    Article  Google Scholar 

  • Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 13, 275–294.

    Article  Google Scholar 

  • Qadir, M., Qureshi, R. H., & Ahmad, N. (1997). Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Research and Rehabilitation, 11, 343–352.

    Article  CAS  Google Scholar 

  • Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils: A review. Land Degradation and Development, 11, 501–521.

    Article  Google Scholar 

  • Qadir, M., Qureshi, R. H., & Ahmad, N. (2002). Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use and Management, 18, 381–385.

    Article  Google Scholar 

  • Qadir, M., Noble, A. D., Oster, J. D., Schubert, S., & Ghafoor, A. (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: A review. Soil Use and Management, 21, 173–180.

    Article  Google Scholar 

  • Qadir, M., Oster, J. D., Schubert, S., & Murtaza, G. (2006). Vegetative bioremediation of sodic and saline-sodic soils for productivity enhancement and environment conservation. In M. Ozturk, Y. Waisel, M. A. Khan, & G. Gork (Eds.), Biosaline agriculture and salinity tolerance in plants (pp. 137–146). Basel: Birkhauser Switzerland.

    Google Scholar 

  • Rabhi, M., Hafsi, C., Lakhdar, A., Hajji, S., Barhoumi, Z., Hamrouni, M. H., et al. (2009). Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. African Journal of Ecology, 47, 463–468.

    Article  Google Scholar 

  • Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., et al. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.

    Article  CAS  Google Scholar 

  • Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2008a). Phytoextraction of lead by marigold and chrysanthemum. Indian Journal of Plant Physiology, 13, 297–299.

    Google Scholar 

  • Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2008b). Tolerance and bioaccumulation of cadmium and lead by gladiolus. National Academy Science Letters, 31, 327–332.

    Google Scholar 

  • Ramana, S., Biswas, A. K., Ajay, & Subba Rao, A. (2009). Phytoremediation of cadmium contaminated soils by marigold and chrysanthemum. National Academy Science Letters, 32, 333–336.

    Google Scholar 

  • Ramana, S., Biswas, A. K., Ajay, Singh, A. B., & Ahirwar, N. (2012a). Phytoremediation of chromium by tuberose. National Academy Science Letters, 35, 71–73.

    Google Scholar 

  • Ramana, S., Biswas, A. K., Singh, A. B., Ajay, Naveen Kumar, P., Ahirwar, N. K., Behera, S. K., & Subba Rao, A. (2012b). Phytoremediation of cadmium contaminated soils by tuberose. Indian Journal of Plant Physiology, 17, 61–64.

    Google Scholar 

  • Ramani, B., Reeck, T., Debez, A., Stelzer, R., Huchzermeyer, B., Schmidt, A., et al. (2006). Aster tripolium L. and Sesuvium portulacastrum L.: Two halophytes, two strategies to survive in saline habitats. Plant Physiology and Biochemistry, 44, 395–408.

    Article  CAS  Google Scholar 

  • Ramasamy, K. (1997). Tannery effluent related pollution on land and water ecosystems. Proceedings of Extended Abstracts from the International Conference on the Biogeochemistry of Trace Elements, California, USA, 771–772.

    Google Scholar 

  • Rasouli, F., Kiani Pouya, A., & Karimian, N. (2013). Wheat yield and physicochemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma, 193–194, 246–255.

    Article  Google Scholar 

  • Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal contents in soils, crops and ground water – A case study. Agriculture, Ecosystems and Environment, 109, 210–322.

    Article  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  Google Scholar 

  • Schimper, A. F. W. (1903). Plant geography upon a physiological basis. Oxford: Clarendon.

    Book  Google Scholar 

  • Setkit, K., Kumsopa, A., Wongthanate, J., & Prapagdee, B. (2014). Enhanced cadmium (Cd) phytoextraction from contaminated soil using Cd-resistant bacterium. Environmental Asia, 7, 89–94.

    Google Scholar 

  • Shanker, A. K., Ravichandran, V., & Pathmanabhan, G. (2005). Phytoaccumulation of chromium by some multipurpose tree seedlings. Agroforestry Systems, 64, 83–87.

    Article  Google Scholar 

  • Shelef, O., Gross, A., & Rachmilevitch, S. (2012). The use of Brassica indica for salt phytoremediation in constructed wetlands. Water Research, 46, 3967–3976.

    Article  CAS  Google Scholar 

  • Shen, H., Christie, P., & Li, X. (2006). Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 28, 111–119.

    Article  CAS  Google Scholar 

  • Silveira, J. A. G., Araujo, S. A. M., Lima, J. P. M. S., & Viegas, R. A. (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66, 1–8.

    Google Scholar 

  • Sinha, R. K., Valani, D., Sinha, S., Singh, S., & Herat, S. (2009). Bioremediation of contaminated sites: A low-cost nature’s biotechnology for environment clean up by versatile microbes, plants and earthworms. Solid waste management and environmental remediation. ISBN: 978-1-60741-761-3.

    Google Scholar 

  • Stocker, O. (1928). Das Halophytenproblem. In K. V. Frisch, R. Goldschmidt, W. Ruhland, & H. Winterstein (Eds.), Ergebnisse der Biologie (pp. 266–353). Berlin, Germany: Springer (German).

    Google Scholar 

  • Sun, Y. B., Zhou, Q. X., An, J., Liu, W. T., & Liu, R. (2009). Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 150, 106–112.

    Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.

    Article  CAS  Google Scholar 

  • Vassilev, A., Schwitzguébel, J. P., Thewys, T., van der Lelie, D., & Vangronsveld, J. (2004). The use of plants for remediation of metal contaminated soils. Scientific World Journal, 4, 9–34.

    Article  CAS  Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Vivas, A., Vorosm, A., Biro, B., Barea, J. M., Ruiz-Lozano, J. M., & Azcón, R. (2003). Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology, 24, 177–186.

    Article  Google Scholar 

  • Waldner, C., Checkley, S., Blakley, B., Pollock, C., & Mitchell, B. (2002). Managing lead exposure and toxicity in cow-calf herds to minimize the potential for food residues. Journal of Veterinary Diagnostic Investigation, 14, 481–486.

    Article  Google Scholar 

  • Walker, D. J., Lutts, S., Sánchez-García, M., & Correal, E. (2014). Atriplex halimus L.: Its biology and uses. Journal of Arid Environments, 100–101, 111–112.

    Article  Google Scholar 

  • Walter, H. (1961). Salinity problems in the acid zones: The adaptations of plants to saline soils. The adaptations of plants to saline soils. Arid Zones Research, 14, 65–68.

    Google Scholar 

  • White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: A review. Annals of Botany, 88, 967–988.

    Article  CAS  Google Scholar 

  • Wu, S. S. (2009). Enhanced phytoremediation of salt-impacted soils using plant growth-promoting rhizobacteria (PGPR). PhD thesis, University of Waterloo.

    Google Scholar 

  • Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125, 155–166.

    Article  Google Scholar 

  • Yao, R., Yang, J., Gao, P., Zhang, J., & Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt affected farmland in the coastal reclamation area. Soil and Tillage Research, 128, 137–148.

    Article  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Purakayastha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Purakayastha, T.J., Mandal, A., Kumari, S. (2017). Phytoremediation of Metal- and Salt-Affected Soils. In: Arora, S., Singh, A., Singh, Y. (eds) Bioremediation of Salt Affected Soils: An Indian Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-48257-6_11

Download citation

Publish with us

Policies and ethics