Skip to main content

Divergence of Species in the Geothermal Environment

  • Chapter
  • First Online:
Adaption of Microbial Life to Environmental Extremes

Abstract

Geothermal areas are unique in many aspects as microbial habitats. They are rare on a global scale and geographically confined. They can be regarded as islands, ecologically separated by large distances and physicochemical dispersal barriers. In a sense the global geothermal ecosystem can be considered to be a world of widely dispersed, often very different ‘archipelagos’ with no mainland. These and other features make geothermal sites an attractive and perhaps ideal model system for studies of microbial divergence and speciation. Microbial speciation may even be more easily observable in geothermal habitats than in other ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar P, Beveridge TJ, Reysenbach AL (2004) Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39

    Article  CAS  PubMed  Google Scholar 

  • Arnórsson S (2003) Arsenic in surface- and up to 90 °C ground waters in a basalt area, N-Iceland: processes controlling its mobility. Appl Geochem 18:1297–1312

    Article  Google Scholar 

  • Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8:37–44

    Article  CAS  PubMed  Google Scholar 

  • Björnsdottir SH, Petursdottir SK, Hreggvidsson GO, Skirnisdottir S, Hjorleifsdottir S, Arnfinnsson J, Kristjansson JK (2009) Thermus islandicus sp. nov., a mixotrophic sulfur-oxidizing member of the genus Thermus. Int J Syst Evol Microbiol 59:2962–2966

    Article  PubMed  Google Scholar 

  • Bödvarsson G (1961) Physical characteristics of natural heat resources in Iceland. Jökull 11:29–38

    Google Scholar 

  • Brock TD (1986) An overview of the thermophiles. In: Thermophiles: general, molecular and applied microbiology. John Wiley & Sons, New York, pp. 1–16

    Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. nov. and sp. nov., a non-sporulating extreme thermophile. J Bacteriol 98:289–297

    Google Scholar 

  • Chung AP, Rainey FA, Valente M, Nobre MF, da Costa MS (2000) Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2006) Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos Trans R Soc Lond B Biol Sci 361:1985–1996

    Article  PubMed  PubMed Central  Google Scholar 

  • Connon SA, Koski AK, Neal AL, Wood SA, Magnuson TS (2008) Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert. FEMS Microbiol Ecol 64:117–128

    Article  CAS  PubMed  Google Scholar 

  • Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States. Extremophiles 13:447–459

    Article  CAS  PubMed  Google Scholar 

  • Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Wilcock WSD, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230

    Article  CAS  Google Scholar 

  • Donahoe-Christiansen J, D’Imperio S, Jackson CK, Inskeep WP, McDermott TR (2004) Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318

    Article  PubMed  Google Scholar 

  • Faulds JE, Coolbaugh M, Blewitt G, Henry CD (2004) Why is Nevada in hot water? Structural controls and tectonic model of geothermal systems in the Northwestern Great Basin. Geoth Res T 28:649–654

    Google Scholar 

  • Giggenbach WF, Sheppard DS, Robinson BW, Stewart MK, Lyon GL (1994) Geochemical structure and position of the Waiotapu geothermal field, New Zealand. Geothermics 23:599–644

    Article  CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  CAS  PubMed  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    Article  CAS  PubMed  Google Scholar 

  • Gong N, Chen C, Xie L, Chen H, Lin X, Xhang R (2005) Characterization of a thermostable alkaline phosphatase from a novel species Thermus yunnanensis sp. nov. and investigation of its cobalt activation at high temperature. Biochim Biophys Acta 1750:103–111

    Article  CAS  PubMed  Google Scholar 

  • Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431

    Article  CAS  PubMed  Google Scholar 

  • Hamamura N, Macur RE, Liu Y, Inskeep WP, Reysenbach AL (2010) Distribution of aerobic arsenite oxidase genes within the Aquificales. In: Hamamura N, Suzuki S, Mendo S, Barroso CM, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry – biological responses to contaminants. TERRAPUB, Tokyo, pp. 47–55

    Google Scholar 

  • Hao R, Lu A, Wang G (2004) Crude-oil-degrading thermophilic bacterium isolated from an oil field. Can J Microbiol 50:175–182

    Article  CAS  PubMed  Google Scholar 

  • Hedenquist JW (1991) Boiling and dilution in the shallow portion of the Waiotapu geothermal system, New Zealand. Geochim Cosmochim Acta 55:2753–2765

    Article  CAS  Google Scholar 

  • Hetzer A, Morgan HW, McDonald IR, Daughney CJ (2007) Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand. Extremophiles 11:605–614

    Article  PubMed  Google Scholar 

  • Hetzer A, McDonald IR, Morgan HW (2008) Venenivibrio stagnispumantis gen. nov., sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from Champagne Pool, Waiotapu, New Zealand. Int J Syst Evol Microbiol 58:398–403

    Article  CAS  PubMed  Google Scholar 

  • Hjorleifsdottir S, Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Species composition of cultivated and non-cultivated bacteria from short filaments in an Icelandic hot spring at 88 °C. Microb Ecol 42:117–125

    CAS  PubMed  Google Scholar 

  • Hjort K, Bernander R (1999) Changes in cell size and DNA content in Sulfolobus cultures during dilution and temperature shift experiments. J Bacteriol 181:5669–5675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holden JF, Summit M, Baross JA (1998) Thermophilic and hyperthermophilic microorganisms in 3–30 °C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol Ecol 25:33–41

    CAS  Google Scholar 

  • Hreggvidsson GO, Kristjansson JK (2003) Thermophily. In: Gerday C, Glansdorff N (eds) Extremophiles – Encyclopedia of Life Support Systems (EOLSS) Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, http://www.eolss.net

    Google Scholar 

  • Hreggvidsson GO, Skirnisdottir S, Smit B, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Kristjansson JK (2006) Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 10:563–575

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Stoffers P, Cheminee JL, Richnow HH, Stetter KO (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature 345:179–181

    Article  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson JA, Morgan HW, Daniel RM (1987) Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int J Syst Bacteriol 37:431–436

    Article  Google Scholar 

  • Hudson JA, Morgan HW, Daniel RM (1989) Numerical classification of Thermus isolates from globally distributed hot springs. Syst Appl Microbiol 11:250–256

    Article  CAS  Google Scholar 

  • Hug K, Maher WA, Stott MB, Krikowa F, Foster S, Moreau JW (2014) Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Front Microbiol 5:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Hӓrtig C, Lohmayer K, Kolb S, Horn MA, Inskeep WP, Planer-Friedrich B (2014) Chemolithotrophic growth of the aerobic hyperthermophilic bacterium Thermocrinis ruber OC 14/7/2 on monothioarsenate and arsenite. FEMS Microbiol Ecol 90:747–760

    Article  Google Scholar 

  • Inskeep WP, Rusch DB, Jay ZJ et al (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaasalainen H, Stefansson A (2011) Chemical analysis of sulfur species in geothermal waters. Talanta 85:1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Kashefi K, Lovley D (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  PubMed  Google Scholar 

  • Keller NS, Stefansson A, Sigfusson B (2014) Arsenic speciation in natural sulfidic geothermal waters. Geochim Cosmochim Acta 142:15–26

    Article  CAS  Google Scholar 

  • Kim YM, Cho HU, Park KY, Cho KH (2014) Identification of the bacterial community of a pilot scale thermophilic aerobic bioreactor treating sewage sludge. Int Biodeter Biodegr 92:66–70

    Article  CAS  Google Scholar 

  • Kristjansson JK, Hreggvidsson GO (1995) Ecology and habitats of extremophiles. World J Microbiol Biotechnol 11:17–25

    Article  CAS  PubMed  Google Scholar 

  • Kristjansson JK, Hreggvidsson GO, Alfredsson GA (1986) Isolation of halotolerant Thermus spp. from submarine hot springs in Iceland. Appl Environ Microbiol 52:1313–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristjansson JK, Hjorleifsdottir S, Marteinsson VT, Alfredsson GA (1994) Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50

    Article  Google Scholar 

  • Kristjansson JK, Hreggvidsson GO, Grant WD (2000) Taxonomy of extremophiles. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Kluwer Academic Publishers, Dordrecht, pp. 231–292

    Google Scholar 

  • Langner HW, Jackson CR, McDermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    Article  PubMed  Google Scholar 

  • Levin R (1981) Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99:1–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Chen C, Peng Q, Ben K, Zhou Z (2002) Thermus rehai sp. nov. isolated from Rehai of Tengchong, Yunnan province, China. J Basic Microbiol 42:337–344

    Article  CAS  PubMed  Google Scholar 

  • Lyon PF, Beffa T, Blanc M, Auling G, Aragno M (2000) Isolation and characterization of highly thermophilic xylanolytic Thermus thermophilus strains from hot compost. Can J Microbiol 46:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Manaia CM, Hoste B, Guiterrez MC, Gillis M, Ventosa A (1995) Halotolerant Thermus strains from marine and terrestrial hot springs belongs to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend. Syst Appl Microbiol 17:526–532

    Article  Google Scholar 

  • Marteinsson VT, Kristjánsson JK, Kristmannsdóttir H, Dahlkvist M, Sæmundsson K, Hannington M, Petursdottir SK, Geptner A, Stoffers P (2001) Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, Northern Iceland, and a novel thermal microbial habitat. Appl Environ Microbiol 67:827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel P, Gudbergsdottir SR, Rike AG, Lin L, Zhang Q, Contursi P, Moracci M, Kristjansson JK, Bolduc B, Gavrilov S, Ravin N, Mardanov A, Bonch-Osmolovskaya E, Young M, Krogh A, Peng X (2015) Comparative metagenomes of eight geographically remote terrestrial hot springs. Microb Ecol 70:411–424

    Article  PubMed  Google Scholar 

  • Miller SR, Castenholz RW (2000) Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 66:4222–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SR, Castenholz RW, Pedersen D (2002) Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 73:4751–4759

    Article  Google Scholar 

  • Miller S, Strong A, Jones K, Ungerer M (2009) Bar-coded pyrosequencing reveals the shared bacterial community properties along the temperature gradients of the alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming H, Yin YR, Li S, Nie GX, Yu TT, Zhou EM, Liu L, Dong L, Li WJ (2014) Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 64:650–656

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Shtaih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach AL (2005) Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended description of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Imahori K (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int J Syst Bacteriol 24:102–112

    Article  CAS  Google Scholar 

  • Palmason G (2005) Jardhiti – Edli og nyting audlindar. Hid islenska bokmenntafelag, Reykjavik (Geothermal energy- its nature and applications Reykjavik, Icelandic Literary Society; 298 pages)

    Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659

    Article  CAS  PubMed  Google Scholar 

  • Petursdottir SK, Hreggvidsson GO, da Costa MS, Kristjansson JK (2000) Genetic diversity analysis of Rhodothermus reflects geographical origin of the isolates. Extremophiles 4:267–274

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Padron E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, Fournier J, Voordouw G, Gieg LM (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sand tailing pond. Environ Sci Technol 45:439–446

    Article  CAS  PubMed  Google Scholar 

  • Redder P, Garrett RA (2006) Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 188:4198–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci U S A 106:8605–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach AL, Banta A, Civello S, Daly J, Mitchel K, Lalonde S, Konhauser KO, Rodman A, Rusterholtz K, Takacs-Vesbach C (2005) The Aquificales of Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, Bozeman, pp. 129–142

    Google Scholar 

  • Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M (2003) Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Appl Geochem 18:1399–1416

    Article  CAS  Google Scholar 

  • Santos MA, Williams RAD, da Costa MS (1989) Numerical taxonomic study of Thermus isolates from hot springs in Portugal. Syst Appl Microbiol 12:10–15

    Article  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Isolation and characterization of a mixotrophic sulfur oxidizing Thermus scotoductus. Extremophiles 5:45–51

    Article  CAS  PubMed  Google Scholar 

  • Spanevello MD, Patel BKC (2004) The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel. FEMS Microbiol Ecol 50:63–73

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Takacs-Vesbach C, Mitchell K, Jackson-Weaver O, Reysenbach AL (2008) Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol 10:1681–1689

    Article  CAS  PubMed  Google Scholar 

  • Takacs-Vesbach C, Inskeep WP, Jay ZJ, Herrgard MJ, Rusch DB, Tringe SG, Kozubal MA, Hamamura N, Macur RE, Fouke BW, Reysenbach AL, McDermott TR, Jennings RM, Hengartner NW, Xie G (2013) Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three Aquificales lineages. Front Microbiol 4:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Masignanai V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vajna B, Kanizsai S, Keki Z, Marialigeti K, Schumann P, Toth EM (2012) Thermus composti sp. nov., isolated from oyster mushroom compost. Int J Syst Evol Microbiol 62:1468–1490

    Article  Google Scholar 

  • Valverde A, Tuffin M, Cowan DA (2012) Biogeography of bacterial communities in hot springs: a focus on the actinobacteria. Extremophiles 16:669–679

    Article  PubMed  Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J, Zhang L (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLOS one 8:e62901

    Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Cohan FM (2005) Microbial diversity in hot spring cyanobacterial mats: pattern and prediction. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, Bozeman, pp. 185–201

    Google Scholar 

  • Ward DM, Bateson MM, Ferris MJ, Nold SC (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M, Grossman A (2008) Genomics, environmental genomics and the issue of microbial species. Heredity 100:207–219

    Article  CAS  PubMed  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  CAS  PubMed  Google Scholar 

  • Wiegel GJ, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108

    Article  CAS  Google Scholar 

  • Williams R, Sharp R (1995) The taxonomy and identification of Thermus. In: Sharp R, Williams R (eds) Thermus species. Plenum, New York, pp. 1–42

    Chapter  Google Scholar 

  • Williams RAD, Smith KE, Welch SG, Micallef J, Sharp RJ (1995) DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol 45:795–499

    Article  Google Scholar 

  • Williams RAD, Smith KE, Welch SG, Micallef J (1996) Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores and comment on the concept of a limited geographical distribution of Thermus species. Int J Syst Bacteriol 46:403–408

    Article  CAS  PubMed  Google Scholar 

  • Yu TT, Yao JC, Ming H, Yin YR, Zhou EM, Liu MJ, Tang SK, Li WJ (2013) Thermus tengchongensis sp. nov., isolated from a geothermally heated soil sample in Tengchong, Yunnan, south-west China. Antonie Van Leeuwenhoek 103:513–518

    Article  PubMed  Google Scholar 

  • Yu TT, Ming H, Yao JC, Zhou EM, Park DJ, Hozzein WN, Kim CJ, Wadaan MA, Li WJ (2015) Thermus liquefaciens sp. nov., isolated from a hot spring sediment sample. Int J Syst Evol Microbiol 65:2491–2495

    Article  CAS  PubMed  Google Scholar 

  • Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 160:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zhang XQ, Ying Y, Ye Y, Xu XW, Zhu XF, Wu M (2010) Thermus arciformis sp. nov., a thermophilic species from a geothermal area. Int J Syst Evol Microbiol 60:834–839

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Haukur Jóhannesson for providing photographs as well as for reviewing a part of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudmundur Oli Hreggvidsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hreggvidsson, G.O., Petursdottir, S.K., Stefansson, S.K., Björnsdottir, S.H., Fridjonsson, O.H. (2017). Divergence of Species in the Geothermal Environment. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Cham. https://doi.org/10.1007/978-3-319-48327-6_3

Download citation

Publish with us

Policies and ethics