Skip to main content

Principle of the Monte-Carlo Method Applied to Dosimetry and Radiation Protection

  • Chapter
  • First Online:
Applied Physics of External Radiation Exposure

Abstract

In previous chapters, we have seen that it is possible to resolve dosimetric and radiation protection problems with fairly easy analytical approaches. By the way, some of these logics are implemented in deterministic codes (e.g. point kernel method). However, according to circumstances, these methods can lead to significant bias on results especially for complex radiological cases. In order to offset these issues, it may be necessary to switch to a Monte Carlo method. Computational algorithms based on this method rely on repeated random sampling to obtain numerical results. It allows a smooth definition of physical parameters during the particle transport for more accuracy in final results. Furthermore, this method is particularly suitable in multi-particles transport problems and for complex geometries involving multi-materials and various densities. In what follows, the Monte-Carlo method applied to particle transport is detailed in terms of implementation in codes and features for radiation protection and dosimetric problems. The use of computer codes to estimate the various radiometric and dosimetric quantities previously defined in this book has become essential. These operate using methods of numerical calculations with approximations that affect more or less the true value of desired quantities. We chose to detail a particular, which is the reference method for the simulations in the field of dosimetry and radiation protection, and whose evocation staked all previous chapters: the Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehmer, D. H. (1951). Mathematical methods in large scale computing units. In Proceedings of the 2nd symposium on large scale digital calculating machinery (141–146). Cambridge, University Press.

    Google Scholar 

  2. Métivier, H. (Ed.). (2006) Radioprotection et ingénierie nucléaire. EDP sciences.

    Google Scholar 

  3. Profio, A. E. (1979). Radiation shielding and dosimetry. New York: Wiley.

    Google Scholar 

  4. Chadwick, M. B., Oblozinsky, P., Herman, M., et al. (2006). ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets, 107(12), 2931–3060.

    Article  ADS  Google Scholar 

  5. Shultis, J. K., & Faw, R. E. (2000). Radiation shielding. American Nuclear Society, Inc. The Jeff-3.1.1 Nuclear Data Library—NEA.

    Google Scholar 

  6. Kalos, M. (1983). A third Monte Carlo sampler, LA-9721-MS. In C. J. Everett, & E. D. Cashwell (Eds.), Los Alamos National Laboratory.

    Google Scholar 

  7. Koblinger, L. (1975). Direct sampling from Klein-Nishina distribution for photon energies above 1.4 MeV. Nuclear Science & Engineering, 56(2), 218–219.

    Google Scholar 

  8. Suteau, C., Chiron, M., Luneville, L., Berger, L., & Huver, M. (2003). MERCURE: Un code 3D industrial de propagation des gammas par la méthode d’atténuation en ligne droite. Applications en radioprotection. Codes de calcul en dosimétrie radiophysique et radioprotection. Congrès de la SFRP Sochaux.

    Google Scholar 

  9. Berger, M. J. (1963). Monte Carlo calculation of the penetration and diffusion of fast charged particles. In B. Alder, S. Fernbach, & Rotenberg (Eds.), Methods in computational physics (Vol. 1, pp. 135–215). New York Academic.

    Google Scholar 

  10. Koivunoro, H., Siiskonen, T., Petri, Kotiluoto P., Auterinen, I., Hippeläinen, E., & Savolainen, S. (2012). Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes. Medical Physics, 39, 1335.

    Article  ADS  Google Scholar 

  11. Wilken, B., & Fritz, T. A. (1976). Energy distribution functions of low energy ions in silicon absorbers measured for large relative energy losses. Nuclear Instruments and Methods in Physics, 138(2), 331.

    Article  ADS  Google Scholar 

  12. Landau, L. (1944). J Phys (USSR), 8, 201.

    Google Scholar 

  13. Leo, W. R. (1994) Techniques for nuclear and particle physics experiments, a how-to-approach. Springer.

    Google Scholar 

  14. Goudsmit, S., & Saunderson, J. L. (1940). Multiple scattering of electrons. Physical Review, 57, 24.

    Article  ADS  MATH  Google Scholar 

  15. Howerton, R. J. et al. (1975). The LLL evaluated nuclear data library (ENDL): Evaluation techniques, reaction, index, and description of individual evaluations, UCRL-50400 (Vol. 15, part A). Lawrence Livermore National Laboratory.

    Google Scholar 

  16. Yu, C. X., Mackie, T. R., & Wong, J. W. (1995). Photon dose calculation incorporating explicit electron transport. Medical Physics, 22(7).

    Google Scholar 

  17. Grady Hughes, H. (2013). Enhanced electron-photon transport in MCNP6. LA-UR-13-27632.

    Google Scholar 

  18. Champion, C., Incerti, S., Perrot, Y., Delorme, R., Bordage, M. C., Bardiès, M., et al. (2014). Dose point kernels in liquid water: An intra-comparison between GRANT4-DNA and a variety of Monte-Carlo codes. Applied Radiation and Isotopes, 83, 137–141.

    Article  Google Scholar 

  19. Bielajew, A. F., Rogers, D. W. O., & Nahumt, A. E. (1985). The Monte Carlo simulation of ion chamber response to 60Co-resolution of anomalies associated with interfaces. Physics in Medicine & Biology, 30(5), 419–427.

    Article  ADS  Google Scholar 

  20. Kawrakow, E., & Rogers, D. W. O. (2000). The EGSnrc code system: Monte Carlo simulation of electron and photon transport, NRCC Report PIRS-701. National Research Council of Canada.

    Google Scholar 

  21. Kawrakow, M. H. E., Rogers, D. W. O., Tessier, F., & Walters, B. R. B. (2010). The EGSnrc code system: Monte Carlo simulation of electron and photon transport I. NRCC Report PIRS-701.

    Google Scholar 

  22. Briesmeister, J. F. (Ed.). (1997). MCNP—A general Monte Carlo N—Particle transport code version 4B (Los Alamos National Laboratory) Report LA-12625-M.

    Google Scholar 

  23. ICRP. (1995). Conversion coefficients for use in radiological protection against external radiation, publication 74.

    Google Scholar 

  24. Antoni. (2008). Private communication.

    Google Scholar 

  25. Hendricks, J. S. (2003). MCNPX model/table comparison. Report LA-14030. Los Alamos.

    Google Scholar 

  26. Chibani, O., & Allen, L. X. (2002). Monte Carlo dose calculations in homogeneous media and at interfaces: A comparison between GEPTS, EGSnrc, MCNP, and measurement. Medical Physics, 29(5).

    Google Scholar 

  27. Keall, P. J., Siebers, J. V., JERAJ, R., & MOHAN, R. (2003). Radio therapy dose calculations in the presence of hip prostheses. Medical Dosimetry, 28(2), 107–112.

    Article  Google Scholar 

  28. Furtoss, C. (2006). Conception et développement d’un fantôme anthropomorphe équipé de détecteurs dans le but d’évaluer la dose efficace à un poste de travail. Université Paris XI UFR scientifique d’Orsay, thèse.

    Google Scholar 

  29. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., et al. (2003). Geant4—A simulation toolkit. Nucl Instrum Meth A, 506(3), 250–303.

    Article  ADS  Google Scholar 

  30. Antoni. (2004). Private communication.

    Google Scholar 

  31. Girod, M., Bourgois, L., Cornillaux, G., Andre, S., & Postaük, J. (2004). Study and presentation of a fast neutron and photon dosemeter for area and criticality monitoring using radiophoto luminescent glass. Radiat Prot Dosim, 112(3).

    Google Scholar 

  32. Barthe, J., Gouriou, J., Daures, J., Ostrowsky, A., & Bordy, J. M. (2003). Utilisation des codes de Monte-Carlo en métrologie des rayonnements ionisants. Congrès SFRP sur les codes de calculs appliqués à la radioprotection, radiophysique et dosimétrie.

    Google Scholar 

  33. Rogers, D. W. O., Bielajew, A. F., & Nahum, A. E. (1985). Ion chamber response and Awall correction factors in a 60Co beam by Monte Carlo simulation. Physics in Medicine & Biology, 30(5), 429–443.

    Article  ADS  Google Scholar 

  34. Khan, H. (1954). Applications of Monte-Carlo USAEC Report AECU-3259. Rand Corp.

    Google Scholar 

  35. Blunk O (1950) Leisgang S Z Phys.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Antoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Antoni, R., Bourgois, L. (2017). Principle of the Monte-Carlo Method Applied to Dosimetry and Radiation Protection. In: Applied Physics of External Radiation Exposure. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-48660-4_6

Download citation

Publish with us

Policies and ethics