Skip to main content

Polyurethane Rubber-Based Nanoblends: Preparation, Characterization and Applications

  • Chapter
  • First Online:
Rubber Nano Blends

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

To improve the mechanical, thermal, flame, moisture and chemical resistance, of Ealstomer polyurethane (TPU) (Thermoplastic), the TPU is blended with different types of the nanoparticles, such as, the nanoclay and carbon nanofibers (CNFs) to form nanocomposites. Different examples of TPU material based on polyester or polyether pre-polymers, were manufactured, that contains a linear segmented block composed of soft segments which is aliphatic polyester polyols or aliphatic polyether polyols are coupled with hard segment formed from aromatic di-isocyantes and hard diols urethane linkages. The structures of the different blends of TPU-nanofillers samples were characterized by FTIR spectroscopy, XRD and the particle diameter of CNTs, clay and TPU-clay blending samples was determined by using transmission electron microscopy (TEM). The XRD characterization showed the shifting position of the diffraction peak of the nanoclay powder intercalated in the polymer matrix. This emphasizes that the melt blending is the most promising and practical method to be used in industry, where, solvents are not required, to produce nanocomposites based on usual compounding devices, such as, extruders or blends.  So it was clear that the TPU-nanofillers blend showed an improved thermal resistance, mechanical properties and physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul DR, Bucknall CB (2000) Polymer blends: formulation and performance. Wiley, New York

    Google Scholar 

  2. Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser, Munich

    Google Scholar 

  3. Tatjana R, Saulute B, Krzysztof P, Jan P (2006) Application of polyurethane-based materials for immobilization of enzymes and cells: a review. Chemija 17:74–89

    Google Scholar 

  4. Yang ZG, Zhao B, Qin SL, Hu ZF, Jin ZK, Wang JH (2004) Study on the mechanical properties of hybrid reinforced rigid polyurethane composite foam. J Appl Polym Sci 92:1493–1500

    Google Scholar 

  5. Gite VV, Mahulikar PP, Hundiwale DG, Kapadi UR (2004). Polyurethane coating using trimer of isophorone diisocyanate. J Sci Ind Res 63:348–354

    Google Scholar 

  6. Sonnenschein MF, Guillaudeu SJ, Landes BG, Wendt BL (2010) Comparison of adipate and succinate polyesters in thermoplastic polyurethanes. Polymer 51:3685–3692

    Google Scholar 

  7. Robert CK (2008) In: Pascal F (ed) Handbook of specialty elastomers (Chapter 4). CRC Press, Raton, pp 134–154

    Google Scholar 

  8. John S (1997) In: Arcella V, Ferro R (ed) Modern fluoropolymers (Chapter 2). Wiley, West Sussex, pp 71–90

    Google Scholar 

  9. Borggreve RJM, Gaymans RJ, Schuijer J (1987) Impact behaviour of nylon-rubber blends: 5. Influence of the mechanical properties of the elastomer. Polymer 30(1):71–77. ISSN 0032-3861

    Google Scholar 

  10. Margolina A, Wu S (1988) Percolation model for brittle-tough transition in nylon/rubber blends. Polymer 29(12):2170–2173. ISSN 0032-3861

    Google Scholar 

  11. Wu S (1988) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35(2):549–561. ISSN 0021-8995

    Google Scholar 

  12. Baldi F, Bignotti F, Tieghi G, Riccό T (2006) Rubber toughening of polyamide 6/organoclay nanocomposites obtained by melt blending. J Appl Polym Sci 99(6):3406–3416. ISSN 0021-8995

    Google Scholar 

  13. Jiang W, Yuan Q, An L, Jiang B (2002) Effect of cavitations on brittle-ductile transition of particle toughened thermoplastic. Polym Commun 43(4):1555–1558. ISSN 0032-3861

    Google Scholar 

  14. GunaSingh C, Soundararajan S, Palanivelu K (2013) Studies on mechanical, thermal properties and characterization of nanocomposites of nylon-6—thermoplastics poly urethane rubber [TPUR] blend. IOSR J Appl Chem 4(1):65–75

    Google Scholar 

  15. Palanivelu K, Sivaraman P, Sharma SK, Verma SK (2003) Int J Plast Technol 7:133

    Google Scholar 

  16. Petrović ZS, Javni I, Waddon A, Bánhegyi G (2000) Structure and properties of polyurethane–silica nanocomposites. J Appl Polym Sci 76:133–151

    Google Scholar 

  17. Ho WK, Koo JH, Ezekoye OA (2010) Thermoplastic polyurethane elastomer nanocomposites: morphology, thermophysical, and flammability properties. J Nanomater 2010:11 (Article ID 583234)

    Google Scholar 

  18. Koo JH, Ho DWH, OA Ezekoye (2006) A review of numerical and experimental characterization of thermal protection materials—part I: numerical modeling. In: Proceedings of the 42nd AIAA/ASME/SAE/ASEE joint propulsion conference, AIAA Paper 2006–4936, vol 8. AIAA, Reston, pp 5895–5945

    Google Scholar 

  19. Koo JH, Ho DWH, Bruns MC, Ezekoye OA (2007) A review of numerical and experimental characterization of thermal protection materials—part II: properties characterization. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, AIAA Paper 2007-2131. AIAA, Reston, pp 5136–5175

    Google Scholar 

  20. Ho DWK, Koo JH, Bruns MC, Ezekoye OA (2007) A review of numerical and experimental characterization of thermal protection materials—part III: experimental testing. In: Proceedings of the 43rd AIAA/ASME/SAE/ASEE joint propulsion conference, AIAA Paper 2007-5773, vol 8. AIAA, Reston, pp 7524–7598

    Google Scholar 

  21. Pinnavaia TJ, Beall GW (eds) (2000) Polymer-clay nanocomposites. Wiley, New York

    Google Scholar 

  22. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New York

    Google Scholar 

  23. Morgan AB, Wilkie CA (eds) (2007) Flame retardant polymer nanocomposites. Wiley, Hobken

    Google Scholar 

  24. Bhattacharya SN, Gupta RK, Kamal MR (2008) Polymeric nanocomposites: theory and practice. Hanser Gardner, Cincinnati

    Google Scholar 

  25. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New York, pp 19–26

    Google Scholar 

  26. Luo ZP, Koo JH (2007) Quantifying the dispersion of mixture microstructures. J Microsc 225(2):118–125

    Article  CAS  Google Scholar 

  27. Abdeen Z (2014) Enhanced recovery of Pb2+ ions from aquatic media 4 by Using polyurethane composite as adsorbent. Environ Process. doi:10.1007/s40710-014-0048-0

  28. Dimitry IHO, Abdeen IZ, Ismail AE, Saad LGA (2011) Studies of particle dispersion in elastomeric polyurethane/organically modified montmorillonite nanocomposites. Int J Green Sci Nanotechnol 3:197–212

    Article  CAS  Google Scholar 

  29. Dimitry IHO, Abdeen IZ, Ismail AE, Saad LGA (2010) Preparation and properties of elastomeric polyurethane organically modified montmorillonite nanocomposites. J Polym Res 17:801–813

    Article  CAS  Google Scholar 

  30. Hesheng X, Mo S (2005) Preparation and characterization of polyurethane carbon nanotubes composites. Soft Matter 1:386–394

    Article  Google Scholar 

  31. Oriakhi CO, Farr IV, Lerner MM (1997) Thermal characterization of poly (styrene sulfonate)/layered double hydroxide nanocomposites. Clays Clay Miner 45:194–202

    Google Scholar 

  32. Nguyen QT, Baird DG (2006) Preparation of polymer–clay nanocomposites and their properties. Adv Polym Tech 25:270–285

    Article  CAS  Google Scholar 

  33. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051

    Article  CAS  Google Scholar 

  34. Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym Plast Technol Eng 52:635–660

    Article  CAS  Google Scholar 

  35. Kumar AP, Depan D, Singh Tomer N, Singh RP (2009) Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog Polym Sci 34:479–515

    Google Scholar 

  36. Giraldi ALFM, Bizarria MTM, Silva AA, Velasco JI, d’Ávila MA, Mei LHI (2008) Effects of extrusion conditions on the properties of recycled poly(ethylene terephthalate)/nanoclay nanocomposites prepared by a twin-screw extruder. J Appl Polym Sci 108:2252–2259

    Article  Google Scholar 

  37. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  38. Dürkop T, Kim BM, Fuhrer MS (2004) Properties and applications of high mobility semiconducting nanotubes. J Phys Condens Matter 16:R553

    Google Scholar 

  39. Ajayan P, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composite. Science 265:1212–1214

    Article  CAS  Google Scholar 

  40. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8:31–37

    Google Scholar 

  41. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230

    Article  CAS  Google Scholar 

  42. Choudhary V, Gupta A (2011) Polymer/carbon nanotube nanocomposites. In: Dr. Yellampalli S (ed) Carbon nanotubes—polymer nanocomposites. InTech

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizi I. Abdeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdeen, Z.I. (2017). Polyurethane Rubber-Based Nanoblends: Preparation, Characterization and Applications. In: Markovic, G., P. M., V. (eds) Rubber Nano Blends. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-48720-5_4

Download citation

Publish with us

Policies and ethics