Skip to main content

Metabolomics of Olive Fruit: A Focus on the Secondary Metabolites

  • Chapter
  • First Online:
The Olive Tree Genome

Abstract

Metabolomics studies are widely used in systems biology approaches with the aim to understand the metabolism and physiology of living organisms. Metabolomics of olive fruit can be defined as the application of metabolomics in the study of the multitude of molecules that characterize olive metabolism during the different fruit’s phenological stages, in response to the crop management choices and environmental variables. The study of olive fruit metabolomics has increased in the recent years, because olive products (oil and table olive) are directly related to nutrition and human health. In this chapter, we will describe the recent trends and applications of metabolomics to the characterization of olive secondary metabolites including the genotypes, the agronomical, and the environmental variables that could modify their composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagna F, Mariotti R, Panara F et al (2012) Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol 12:162–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allwood JW, Goodacre R (2010) An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 21:33–47

    Article  CAS  PubMed  Google Scholar 

  • Amiot MJ, Fleuriet A, Macheix JJ (1986) Importance and evolution of phenolic-compounds in olive during growth and maturation. J Agric Food Chem 34:823–826

    Article  CAS  Google Scholar 

  • Amiot MJ, Fleuriet A, Macheix JJ (1989) Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28:67–69

    Article  CAS  Google Scholar 

  • Andary C, Wylde R, Laffite C et al (1982) Structure of verbascoside and orobancoside, caffeic acid sugar esters from Orobanche rapum-genistae. Phytochemistry 21:1123–1127

    Article  CAS  Google Scholar 

  • Angerosa F (2002) Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur J Lipid Sci Technol 104:639–660

    Article  CAS  Google Scholar 

  • Angerosa F, Servili M, Selvaggini R et al (2004) Volatile compounds in virgin olive oil: occurrence and their relationship with the quality. J Chromatogr A 1054:17–31

    Article  CAS  PubMed  Google Scholar 

  • Aparicio R, Luna G (2002) Characterisation of monovarietal virgin olive oils. Eur J Lipid Sci Technol 104:614–627

    Article  CAS  Google Scholar 

  • Aparicio R, Morales MT (1998) Characterization of olive ripeness by green aroma compounds of virgin olive oil. J Agric Food Chem 46:116–1122

    Article  Google Scholar 

  • Aparicio R, Morales MT, Alonso MV (1996) Relationship between volatile compounds and sensory attributes by statistical sensory wheel. J Am Oil Chem Soc 73:1253–1264

    Article  CAS  Google Scholar 

  • Beltrán G, Bucheli ME, Aguilera MP et al (2015) Squalene in virgin olive oil: screening of variability in olive cultivars. Eur J Lipid Sci Technol 117:0000

    Google Scholar 

  • Benelli G, Caruso G, Giunti G et al (2015) Changes in olive oil volatile organic compounds induced by water status and light environment in canopies of Olea europaea L. trees. J Sci Food Agri 95:2473–2481

    Article  CAS  Google Scholar 

  • Bianchi G (2003) Lipids and phenols in table olives. Eur J Lipid Sci Technol 105:229–242

    Article  CAS  Google Scholar 

  • Boskou D (2009) Other important minor constituents. In: Boskou D (ed) Olive oil. Minor constituents and health. CRC Press, Boca Raton, pp 45–54

    Google Scholar 

  • Bourquelot E, Vintilesco JCR (1908) Sur l’oleuropein, nouveau principe de nature glucosidique retré de l’olivier (Olea europaea L.). Compt Rend Hebd Acad Sci 147:533–535

    CAS  Google Scholar 

  • Caruso G, Gucci R, Urbani S et al (2014) Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agr Water Manage 134:94–103

    Article  Google Scholar 

  • Cevallos-Cevallos JM, Reyes-De-Corcueraa JI, Etxeberria E et al (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20:11–12

    Article  Google Scholar 

  • Cirilli M, Bellincontro A, Urbani S et al (2016) On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device. Food Chem 199:96–104

    Article  CAS  PubMed  Google Scholar 

  • Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic Rev 31:155–229

    CAS  Google Scholar 

  • Conde C, Silva P, Agasse A et al (2007) Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol 48:42–53

    Article  CAS  PubMed  Google Scholar 

  • Conde C, Delrot S, Gerósa H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol 165:1545–1562

    Article  CAS  PubMed  Google Scholar 

  • Dabbou S, Chehab H, Faten B et al (2010) Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions. Agri Water Manag 97:763–768

    Article  Google Scholar 

  • Dabbou S, Dabbou S, Chehab H et al (2011) Chemical composition of virgin olive oils from Koroneiki cultivar grown in Tunisia with regard to fruit ripening and irrigation regimes. Int J Food Sci Technol 46:577–585

    Article  CAS  Google Scholar 

  • Dağdelen A, Tümen G, Ozcan MM et al (2013) Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalik, Domat and Gemlik varieties at different ripening stages. Food Chem 136(1):41–45

    Article  PubMed  Google Scholar 

  • Di Vaio C, Nocerino S, Paduano A et al (2013) Influence of some environmental factors on drupe maturation and olive oil composition. J Sci Food Agri 93:1134–1139

    Article  Google Scholar 

  • Erel R, Kerem Z, Ben-Gal A et al (2013) Olive (Olea europaea L.) tree nitrogen status is a key factor for olive oil quality. J Agric Food Chem 61:11261–11272

    Article  CAS  PubMed  Google Scholar 

  • Esti M, Cinquanta L, La Notte E (1998) Phenolic compounds in different olive varieties. J Agric Food Chem 46:32–35

    Article  CAS  PubMed  Google Scholar 

  • Farinelli D, Ruffolo M, Scatolini G et al (2011) Influence of fruit ripening on oil quality to establish the optimum harvesting time for olive cultivars in ‘Umbria’ DOP. Acta Ital Hortus 1:159–163

    Google Scholar 

  • Fernández-Cuesta A, León L, Velasco L et al (2013) Changes in squalene and sterols associated with olive maturation. Food Res Int 54:1885–1889

    Article  Google Scholar 

  • Fernandez-Escobar R, Beltran G, Sanchez-Zamora MA et al (2006) Olive oil quality decreases with nitrogen over-fertilization. HortScience 41:215–219

    CAS  Google Scholar 

  • Flora LL, Madore MA (1993) Stachyose and mannitol transport in olive (Olea europaea L.). Planta 189:484–490

    Article  CAS  Google Scholar 

  • Gomez-Rico A, Desamparados Salvador M et al (2009) Virgin olive oil and olive fruit minor constituents as affected by irrigation management based on SWP and TDF as compared to ETc in medium-density young olive orchards (Olea europaea L. cv. Cornicabra and Morisca). Food Res Int 42:1067–1076

    Article  CAS  Google Scholar 

  • Gucci R, Moing A, Gravano E et al (1998) Partitioning of photosynthetic carbohydrates in leaves of salt stressed olive plants. Austr J Plant Physiol 25:571–579

    Article  CAS  Google Scholar 

  • Hall RD, Brouwer ID, Fitzgerald MA (2008) Plant metabolomics and its potential application for human nutrition. Physiol Plant 132:162–175

    CAS  PubMed  Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56

    Article  PubMed  Google Scholar 

  • Inglese P, Famiani F, Galvano F et al (2011) Factors affecting extra-virgin olive oil composition. Hort Rev 38:83–146

    CAS  Google Scholar 

  • Jones CG, Hartley SEA (1999) Protein competition model of phenolic allocation. Oikos 86:27–44

    Article  CAS  Google Scholar 

  • Kalua CM, Allen MS, Bedgood DR Jr et al (2007) Olive oil volatile compounds, flavour development and quality: a critical review. Food Chem 100:273–286

    Article  CAS  Google Scholar 

  • Koidis A, Boskou D (2006) The contents of proteins and phospholipids in cloudy veiled virgin olive oils. Eur J Lipid Sci Technol 108:323–328

    Article  CAS  Google Scholar 

  • Kubo I, Matsumoto A (1984) Molluscicides from olives Olea europaea and their efficient isolation by countercurrent chromatography. J Agric Food Chem 32:687–688

    Article  CAS  Google Scholar 

  • Kusano M, Fukushima A, Redestig H et al (2011) Metabolomic approaches toward understanding nitrogen metabolism in plants. J Exp Bot 62:1439–1453

    Article  CAS  PubMed  Google Scholar 

  • Lanza B, Di Serio MG (2015) SEM characterization of olive (Olea europaea L.) fruit epicuticular waxes and epicarp. Sci Hort 191:49–56

    Article  CAS  Google Scholar 

  • Lavee S (1986) Olive. In: Monselise SP (ed) Handbook of fruit set and development. CRC Press, Boca Raton, FL, pp 261–276

    Google Scholar 

  • Marsilio V, Campestre C, Lanza B et al (2001) Sugar and polyol compositions of some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food Chem 72:485–490

    Article  CAS  Google Scholar 

  • Martinelli F, Basile B, Morelli G et al (2012) Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci Hortic 144:201–207

    Article  CAS  Google Scholar 

  • Martinelli F, Remorini D, Saia S et al (2013) Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci Hortic 159:52–58

    Article  CAS  Google Scholar 

  • Minguez-Mosquera MI, Garrido-Fernandez J (1989) Chlorophyll and carotenoid presence in olive fruit (Olea europaea). J Agric Food Chem 37:1–7

    Article  CAS  Google Scholar 

  • Montedoro GF, Servili M, Pannelli G (2003) Le caratteristiche del prodotto e le relazioni con le variabili agronomiche. In: Fiorino P (ed) Olea-Trattato di olivicoltura. Edagricole-Edizioni Agricole de Il Sole 24 ORE Edagricole, Bologna, Italy, pp 263–289

    Google Scholar 

  • Monton MRN, Soga T (2007) Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chrom A 1168:237–246

    Article  CAS  Google Scholar 

  • Ninfali P, Bacchiocca M, Biagiotti E et al (2008) A 3-year study on quality, nutritional and organoleptic evaluation of organic and conventional extra-virgin olive oils. J Am Oil Chem Soc 85:151–158

    Article  CAS  Google Scholar 

  • Obied-Hassan K, Bedgood HK, Prenzler PD et al (2007) Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal Chim Acta 603:176–189

    Article  CAS  Google Scholar 

  • Obied-Hassan K, Prenzler PD, Omar SH et al (2012) Pharmacology of olive biophenols. In: Fishbein JC, Heilman JM (eds) Advances in molecular toxicology, vol 6, pp 195–242

    Google Scholar 

  • Obied-Hassan K, Prenzler PD, Ryan D et al (2008) Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat Prod Rep 25:1167–1179

    Article  CAS  Google Scholar 

  • Panizzi L, Scarpati ML, Oriente G (1960) Chemical structure of oleuropein, bitter glucoside of olive with hypotensive activity. Gazz Chim Ital 90:1449–1485

    CAS  Google Scholar 

  • Ragazzi E, Veronese G, Guitto A (1973) The demethyloleuropein, a new glucoside extracted from ripe olives. Ann Chim 63:13–20

    CAS  Google Scholar 

  • Ramautar R, Demirci A, De Jong GJ (2006) Capillary electrophoresis in metabolomics. Trends Anal Chem 25:455–466

    Article  CAS  Google Scholar 

  • Ripa V, De Rose F, Caravita MA et al (2008) Qualitative evaluation of olive oils from new olive selections and effects of genotype and environment on oil quality. Adv Hort Sci 22:95–103

    Google Scholar 

  • Robards K, Prenzler PD, Tucke G et al (1999) Phenolic compounds and their role in oxidative processes in fruits. Food Chem 66:401–436

    Article  CAS  Google Scholar 

  • Romani A, Mulinacci N, Pinelli P et al (1999) Polyphenolic content in five Tuscany cultivars of Olea europaea L. J Agri Food Chem 47:964–967

    Article  CAS  Google Scholar 

  • Rodríguez G, Lama A, Rodríguez R et al (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technol 99:5261–5269

    Article  Google Scholar 

  • Rosati A, Cafiero C, Paoletti A et al (2014) Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chem 159:236–243

    Article  CAS  PubMed  Google Scholar 

  • Rosati A, Zipanćič M, Caporali S et al (2009) Fruit weight is related to ovary weight in olive (Olea europaea L.). Sci Hortic 122:399–403

    Article  Google Scholar 

  • Ruan Y, Patrick J (1995) The cellular pathway of post-phloem sugar transport in developing tomato fruit. Planta 196:434–444

    Article  CAS  Google Scholar 

  • Ryan D, Antolovich M, Prenzler P et al (2002) Biotransformations of phenolic compounds in Olea europaea L. Sci Hortic 92:147–176

    Article  CAS  Google Scholar 

  • Sakouhi F, Khaled Sbei WH, Absalon C et al (2001) Characterisation and accumulation of squalene and n-alkanes in developing Tunisian Olea europaea L. fruits. Int J Food Sci Technol 46:2281–2286

    Article  Google Scholar 

  • Sánchez J (1995) Olive oil biogenesis. Contribution of fruit photosynthesis. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer Academic, Dordrecht, pp 564–566

    Chapter  Google Scholar 

  • Sánchez J, Harwood JL (2002) Biosynthesis of triacylglycerols and volatiles in olives. Eur J Lipid Sci Technol 104:564–573

    Article  Google Scholar 

  • Servili M, Baldioli M, Selvaggini R et al (1999a) Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of nüzhenide and its distribution in the constitutive parts of fruit. J Agric Food Chem 47:12–18

    Article  CAS  PubMed  Google Scholar 

  • Servili M, Baldioli M, Selvaggini R et al (1999b) HPLC evaluation of phenols in olive fruit, virgin olive oil, vegetation waters and pomace and 1D and 2D-NMR characterization. J Am Oil Chem Soc 76:873–882

    Article  CAS  Google Scholar 

  • Servili M, Esposto S, Lodolini E et al (2007) Irrigation effects on quality, phenolic composition and selected volatiles of virgin olive oil cv Leccino. J Agri Food Chem 55:6609–6618

    Article  CAS  Google Scholar 

  • Servili M, Esposto S, Taticchi A et al (2009) Volatile compounds of virgin olive oil: their importance in the sensory quality. In: Berti L, Maury J (eds) Advances in olive resources. Transworld Research Network, Kerala, India, pp 45–77

    Google Scholar 

  • Servili M, Montedoro GF (2002) Contribution of phenolic compounds to virgin olive oil quality. Eur J Lipid Sci Technol 104:602–613

    Article  CAS  Google Scholar 

  • Taticchi A, Esposto S, Servili M (2014) The basis of the sensory properties of virgin olive oil. In: Monteleone E, Langstaff S (eds) Olive oil sensory science, vol 2. Wiley, Chichester, pp 33–50

    Google Scholar 

  • Tovar MJ, Romero MP, Girona J et al (2002) L-Phenylalanine ammonia-lyase activity and concentration of phenolics in developing fruit of olive tree (Olea europaea L. cv. Arbequina) grown under different irrigation regimes. J Sci Food Agri 82:892–898

    Article  CAS  Google Scholar 

  • Vekiari SA, Oreopoulou V, Kourkoutas Y et al (2010) Characterization and seasonal variation of the quality of virgin olive oil of the Throumbolia and Koroneiki varieties from Southern Greece. Grasas Aceites 61(3):221–231

    Article  CAS  Google Scholar 

  • Weckwerth W, Fiehn O (2002) Can we discover novel pathways using metabolomic analysis? Cur Opin Biotechnol 13:156–160

    Article  CAS  Google Scholar 

  • Wiesman Z (2009) Desert olive oil cultivation: advanced biotechnologies. Academic Press, Burlington, MA

    Google Scholar 

  • Wishart DS (2008) Metabolomics: applications to food science and nutrition research. Trends Food Sci Technnol 19:482–493

    Article  CAS  Google Scholar 

  • Wolfender JL, Glauser G, Boccard J et al (2009) MS-based plant metabolomic approaches for biomarker discovery. Nat Prod Comm 4:1417–1430

    CAS  Google Scholar 

  • Zhang XY, Wang XL, Wang XF et al (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Sebastiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Servili, M., Sordini, B., Esposto, S., Taticchi, A., Urbani, S., Sebastiani, L. (2016). Metabolomics of Olive Fruit: A Focus on the Secondary Metabolites. In: Rugini, E., Baldoni, L., Muleo, R., Sebastiani, L. (eds) The Olive Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-48887-5_8

Download citation

Publish with us

Policies and ethics