Skip to main content

Exercise and Balance in Older Adults with Movement Disorders

  • Chapter
  • First Online:
Locomotion and Posture in Older Adults

Abstract

This chapter concerns balance, gait function, exercise, and current rehabilitation options for older adults with Parkinson’s disease (PD) and stroke, within the context of normal aging. We outline the primary balance and gait deficits and their impact on fall rates for PD and stroke, with discussion regarding impairment in dual tasking and cognitive disturbances. We consider current options in physical therapy and exercise-based therapy for PD and stroke, particularly for interlimb coordination and gait function. Crossover approaches in rehabilitative techniques from PD/stroke to normal aging motor impairments often go underutilized in the clinic. Therefore, implications for older adults without movement disorders, who often have purely aging-related symptoms similar to those of PD, are discussed. Currently, research is especially engaged in investigating novel approaches to multimodal exercise, which have emerged as promising therapies for balance impairments including aerobic exercise, tai chi, and dance. Efficacy of such interventions is presented with respect to new research showing cognitive effects. We conclude the chapter by discussing hypotheses regarding mechanisms underlying deficit and recovery in these populations. Understanding the mechanisms for rehabilitative gains is crucial for developing targeted and efficient therapy for PD and stroke populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melton LJ, Leibson CL, Achenbach SJ, Bower JH, Maraganore DM, Oberg AL, et al. Fracture risk after the diagnosis of Parkinson’s disease: influence of concomitant dementia. Mov Disord. 2006;21(9):1361–7.

    Article  PubMed  Google Scholar 

  2. Johnell O, Melton LJ, Atkinson EJ, O'Fallon WM, Kurland LT. Fracture risk in patients with parkinsonism: a population-based study in Olmsted County, Minnesota. Age Ageing. 1992;21(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–44.

    Article  PubMed  Google Scholar 

  4. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871–84.

    Article  PubMed  Google Scholar 

  5. Stewart KC, Fernandez HH, Okun MS, Jacobson CE, Hass CJ. Distribution of motor impairment influences quality of life in Parkinson’s disease. Mov Disord. 2008;23(10):1466–8.

    Article  PubMed  Google Scholar 

  6. Chen J, Devine A, Dick IM, Dhaliwal SS, Prince RL. Prevalence of lower extremity pain and its association with functionality and quality of life in elderly women in Australia. J Rheumatol. 2003;30(12):2689–93.

    PubMed  Google Scholar 

  7. Camicioli R, Oken BS, Sexton G, Kaye JA, Nutt JG. Verbal fluency task affects gait in Parkinson’s disease with motor freezing. J Geriatr Psychiatry Neurol. 1998;11(4):181–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bond JM, Morris M. Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch Phys Med Rehabil. 2000;81(1):110–6.

    Article  CAS  PubMed  Google Scholar 

  9. O'Shea S, Morris ME, Iansek R. Dual task interference during gait in people with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys Ther. 2002;82(9):888–97.

    PubMed  Google Scholar 

  10. Hausdorff JM, Balash J, Giladi N. Effects of cognitive challenge on gait variability in patients with Parkinson’s disease. J Geriatr Psychiatry Neurol. 2003;16(1):53–8.

    PubMed  Google Scholar 

  11. Maki BE. Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc. 1997;45(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  12. Rochester L, Hetherington V, Jones D, Nieuwboer A, Willems AM, Kwakkel G, et al. Attending to the task: interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch Phys Med Rehabil. 2004;85(10):1578–85.

    Article  PubMed  Google Scholar 

  13. Forster A, Young J. Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ. 1995;311(6997):83–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersson AG, Kamwendo K, Appelros P. Fear of falling in stroke patients: relationship with previous falls and functional characteristics. Int J Rehabil Res. 2008;31(3):261–4.

    Article  PubMed  Google Scholar 

  15. Mackintosh SF, Goldie P, Hill K. Falls incidence and factors associated with falling in older, community-dwelling, chronic stroke survivors (>1 year after stroke) and matched controls. Aging Clin Exp Res. 2005;17(2):74–81.

    Article  PubMed  Google Scholar 

  16. Mackintosh SF, Hill K, Dodd KJ, Goldie P, Culham E. Falls and injury prevention should be part of every stroke rehabilitation plan. Clin Rehabil. 2005;19(4):441–51.

    Article  CAS  PubMed  Google Scholar 

  17. Kiyota Y, Hase K, Nagashima H, Obara T, Liu M. Adaptation process for standing postural control in individuals with hemiparesis. Disabil Rehabil. 2011;33(25–26):2567–73.

    Article  PubMed  Google Scholar 

  18. Mansfield A, Danells CJ, Inness E, Mochizuki G, McIlroy WE. Between-limb synchronization for control of standing balance in individuals with stroke. Clin Biomech (Bristol, Avon). 2011;26(3):312–7.

    Google Scholar 

  19. Inness EL, Mansfield A, Lakhani B, Bayley M, McIlroy WE. Impaired reactive stepping among patients ready for discharge from inpatient stroke rehabilitation. Phys Ther. 2014;94(12):1755–64.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hendrickson J, Patterson KK, Inness EL, McIlroy WE, Mansfield A. Relationship between asymmetry of quiet standing balance control and walking post-stroke. Gait Posture. 2014;39(1):177–81.

    Article  PubMed  Google Scholar 

  21. Adegoke BO, Olaniyi O, Akosile CO. Weight bearing asymmetry and functional ambulation performance in stroke survivors. Glob J Health Sci. 2012;4(2):87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Domellof ME, Elgh E, Forsgren L. The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov Disord. 2011;26(12):2183–9.

    Article  PubMed  Google Scholar 

  23. Pulvermuller F. Brain reflections of words and their meaning. Trends Cogn Sci. 2001;5(12):517–24.

    Article  PubMed  Google Scholar 

  24. Kemmerer D, Castillo JG, Talavage T, Patterson S, Wiley C. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain Lang. 2008;107(1):16–43.

    Article  PubMed  Google Scholar 

  25. Raposo A, Moss HE, Stamatakis EA, Tyler LK. Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia. 2009;47(2):388–96.

    Article  PubMed  Google Scholar 

  26. Grossi JA, Maitra KK, Rice MS. Semantic priming of motor task performance in young adults: implications for occupational therapy. Am J Occup Ther. 2007;61(3):311–20.

    Article  PubMed  Google Scholar 

  27. Rodriguez AD. Semantic-motor representations: effects on language and motor production. US: ProQuest Information & Learning; 2010.

    Google Scholar 

  28. Dalla Volta R, Gianelli C, Campione GC, Gentilucci M. Action word understanding and overt motor behavior. Exp Brain Res. 2009;196(3):403–12.

    Article  PubMed  Google Scholar 

  29. Raz N. Aging of the brain and its impact on cognitive performance: integration of structural and functional findings. In: Craik FIM, Salthouse TA, editors. The handbook of aging and cognition. 2nd ed. Mahwah, NJ: Lawrence Erlbaum; 2000. p. 1–90.

    Google Scholar 

  30. Cabeza R. Functional neuroimaging of cognitive aging. In: Cabeza R, Kingstone A, editors. Handbook of functional neuroimaging of cognition. Cambridge, MA: MIT Press; 2001. p. 331–77.

    Google Scholar 

  31. Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain. 2002;125(2):276–89.

    Article  PubMed  Google Scholar 

  32. Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35(3):715–28.

    Article  PubMed  Google Scholar 

  33. Nieuwboer A, Rochester L, Muncks L, Swinnen SP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15 Suppl 3:S53–8.

    Article  PubMed  Google Scholar 

  34. Poletti M, Frosini D, Pagni C, Baldacci F, Nicoletti V, Tognoni G, et al. Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83(6):601–6.

    Article  PubMed  Google Scholar 

  35. Baker K, Rochester L, Nieuwboer A. The immediate effect of attentional, auditory, and a combined cue strategy on gait during single and dual tasks in Parkinson’s disease. Arch Phys Med Rehabil. 2007;88(12):1593–600.

    Article  PubMed  Google Scholar 

  36. Morris ME, Huxham FE, McGinley J, Iansek R. Gait disorders and gait rehabilitation in Parkinson’s disease. Adv Neurol. 2001;87:347–61.

    CAS  PubMed  Google Scholar 

  37. Freedland RL, Festa C, Sealy M, McBean A, Elghazaly P, Capan A, et al. The effects of pulsed auditory stimulation on various gait measurements in persons with Parkinson’s disease. NeuroRehabilitation. 2002;17(1):81–7.

    PubMed  Google Scholar 

  38. Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease. Clin Rehabil. 2006;20(1):36–45.

    Article  PubMed  Google Scholar 

  39. Cahn-Weiner DA, Boyle PA, Malloy PF. Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Appl Neuropsychol. 2002;9(3):187–91.

    Article  PubMed  Google Scholar 

  40. Li KZH, Lindenberger U, Freund AM, Baltes PB. Walking while memorizing: age-related differences in compensatory behavior. Psychol Sci. 2001;12(3):230–7.

    Article  CAS  PubMed  Google Scholar 

  41. Iansek R, Bradshaw J, Phillips J, Morris ME, Cunnington R. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain. 1995;118(Part 6):1613–5.

    Google Scholar 

  42. Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol. 2005;76(6):393–413.

    Article  CAS  PubMed  Google Scholar 

  43. Dalrymple-Alford J, Kalders A, Jones R, Watson R. A central executive deficit in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1994;57:360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Plummer P, Eskes G, Wallace S, Giuffrida C, Fraas M, Campbell G, et al. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch Phys Med Rehabil. 2013;94(12):2565–74. e6.

    Article  PubMed  Google Scholar 

  45. Hyndman D, Pickering RM, Ashburn A. Reduced sway during dual task balance performance among people with stroke at 6 and 12 months after discharge from hospital. Neurorehabil Neural Repair. 2009;23(8):847–54.

    Article  PubMed  Google Scholar 

  46. Subramaniam S, Hui-Chan CW, Bhatt T. Effect of dual tasking on intentional vs. reactive balance control in people with hemiparetic stroke. J Neurophysiol. 2014;112(5):1152–8.

    Article  PubMed  Google Scholar 

  47. Patel P, Bhatt T. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors. Top Stroke Rehabil. 2014;21(4):347–57.

    Article  PubMed  Google Scholar 

  48. Assayag EB, Shenhar-Tsarfaty S, Korczyn AD, Kliper E, Hallevi H, Shopin L, et al. Gait measures as predictors of poststroke cognitive function: evidence from the TABASCO study. Stroke. 2015;46(4):1077–83.

    Google Scholar 

  49. Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture. 2007;26(1):113–9.

    Article  PubMed  Google Scholar 

  50. Faulkner KA, Redfern MS, Cauley JA, Landsittel DP, Studenski SA, Rosano C, et al. Multitasking: association between poorer performance and a history of recurrent falls. J Am Geriatr Soc. 2007;55(4):570–6.

    Article  PubMed  Google Scholar 

  51. Soriano TA, DeCherrie LV, Thomas DC. Falls in the community-dwelling older adult: a review for primary-care providers. Clin Interv Aging. 2007;2(4):545–54.

    PubMed  PubMed Central  Google Scholar 

  52. Kerr B, Condon SM, McDonald LA. Cognitive spatial processing and the regulation of posture. J Exp Psychol Hum Percept Perform. 1985;11(5):617–22.

    Article  CAS  PubMed  Google Scholar 

  53. Shumway-Cook A, Woollacott MH. Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol SCi Med Sci. 2000;55A(1):M10–6.

    Google Scholar 

  54. Melzer I, Oddsson LI. The effect of a cognitive task on voluntary step execution in healthy elderly and young individuals. J Am Geriatr Soc. 2004;52(8):1255–62.

    Article  PubMed  Google Scholar 

  55. Verghese J, Buschke H, Viola L, Katz M, Hall C, Kuslansky G, et al. Validity of divided attention tasks in predicting falls in older individuals: a preliminary study. J Am Geriatr Soc. 2002;50(9):1572–6.

    Article  PubMed  Google Scholar 

  56. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3):329–42. quiz 472.

    Article  PubMed  Google Scholar 

  57. Zijlstra A, Ufkes T, Skelton DA, Lundin-Olsson L, Zijlstra W. Do dual tasks have an added value over single tasks for balance assessment in fall prevention programs? A mini-review. Gerontology. 2008;54(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  58. Morris M, Iansek R, Smithson F, Huxham F. Postural instability in Parkinson’s disease: a comparison with and without a concurrent task. Gait Posture. 2000;12(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  59. Smithson F, Morris ME, Iansek R. Performance on clinical tests of balance in Parkinson’s disease. Phys Ther. 1998;78(6):577–92.

    Article  CAS  PubMed  Google Scholar 

  60. Ashburn A, Stack E, Pickering RM. CD. W. Predicting fallers in a community-based sample of people with Parkinson’s disease. Gerontology. 2001;47(5):277–81.

    Article  CAS  PubMed  Google Scholar 

  61. Winogrodzka A, Wagenaar RC, Booij J, Wolters EC. Rigidity and bradykinesia reduce interlimb coordination in Parkinsonian gait. Arch Phys Med Rehabil. 2005;86(2):183–9.

    Article  PubMed  Google Scholar 

  62. Roemmich RT, Field AM, Elrod JM, Stegemoller EL, Okun MS, Hass CJ. Interlimb coordination is impaired during walking in persons with Parkinson’s disease. Clin Biomech (Bristol, Avon). 2013;28(1):93–7.

    Google Scholar 

  63. Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of gait and Parkinson’s disease: the effects of dual tasking. J Neurol Neurosurg Psychiatry. 2009;80(3):347–50.

    Article  CAS  PubMed  Google Scholar 

  64. Tanahashi T, Yamamoto T, Endo T, Fujimura H, Yokoe M, Mochizuki H, et al. Noisy interlimb coordination can be a main cause of freezing of gait in patients with little to no parkinsonism. PLoS One. 2013;8(12):e84423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Spildooren J, Vercruysse S, Desloovere K, Vandenberghe W, Kerckhofs E, Nieuwboer A. Freezing of gait in Parkinson’s disease: the impact of dual-tasking and turning. Mov Disord. 2010;25(15):2563–70.

    Article  PubMed  Google Scholar 

  66. Brown MJ, Almeida QJ, Rahimi F. The dopaminergic system in upper limb motor blocks (ULMB) investigated during bimanual coordination in Parkinson’s disease (PD). J Neurol. 2015;262(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  67. Kerr GK, Worringham CJ, Cole MH, Lacherez PF, Wood JM, Silburn PA. Predictors of future falls in Parkinson disease. Neurology. 2010;75(2):116–24.

    Article  CAS  PubMed  Google Scholar 

  68. Awad LN, Palmer JA, Pohlig RT, Binder-Macleod SA, Reisman DS. Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabil Neural Repair. 2015;29(5):416–23.

    Google Scholar 

  69. Patterson KK, Parafianowicz I, Danells CJ, Closson V, Verrier MC, Staines WR, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304–10.

    Article  PubMed  Google Scholar 

  70. van Swigchem R, Roerdink M, Weerdesteyn V, Geurts AC, Daffertshofer A. The capacity to restore steady gait after a step modification is reduced in people with poststroke foot drop using an ankle-foot orthosis. Phys Ther. 2014;94(5):654–63.

    Article  PubMed  Google Scholar 

  71. van Swigchem R, van Duijnhoven HJ, den Boer J, Geurts AC, Weerdesteyn V. Deficits in motor response to avoid sudden obstacles during gait in functional walkers poststroke. Neurorehabil Neural Repair. 2013;27(3):230–9.

    Article  PubMed  Google Scholar 

  72. Choi W, Lee G, Lee S. Effect of the cognitive-motor dual-task using auditory cue on balance of surviviors with chronic stroke: a pilot study. Clin Rehabil. 2015;29(8):763–70.

    Google Scholar 

  73. Choi JH, Kim BR, Han EY, Kim SM. The effect of dual-task training on balance and cognition in patients with subacute post-stroke. Ann Rehabil Med. 2015;39(1):81–90.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang XQ, Pi YL, Chen BL, Chen PJ, Liu Y, Wang R, et al. Cognitive motor interference for gait and balance in stroke: a systematic review and meta-analysis. Eur J Neurol. 2015;22(3):555–e37.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther. 2000;80(9):896–903.

    CAS  PubMed  Google Scholar 

  76. Maranhao-Filho PA, Maranhao ET, Lima MA, Silva MM. Rethinking the neurological examination II: dynamic balance assessment. Arq Neuropsiquiatr. 2011;69(6):959–63.

    Article  PubMed  Google Scholar 

  77. Plummer-D'Amato P, Cohen Z, Daee NA, Lawson SE, Lizotte MR, Padilla A. Effects of once weekly dual-task training in older adults: a pilot randomized controlled trial. Geriatr Gerontol Int. 2012;12(4):622–9.

    Article  PubMed  Google Scholar 

  78. Earhart GM. Dynamic control of posture across locomotor tasks. Mov Disord. 2013;28(11):1501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther. 2009;32(2):46–9.

    Article  PubMed  Google Scholar 

  80. Horak FB, Wrisley DM, Frank J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther. 2009;89(5):484–98.

    Article  PubMed  PubMed Central  Google Scholar 

  81. King LA, Horak FB. Delaying mobility disability in people with Parkinson disease using a sensorimotor agility exercise program. Phys Ther. 2009;89(4):384–93.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brauer SG, Morris ME. Can people with Parkinson’s disease improve dual tasking when walking? Gait Posture. 2010;31(2):229–33.

    Article  PubMed  Google Scholar 

  83. Yogev-Seligmann G, Giladi N, Brozgol M, Hausdorff JM. A training program to improve gait while dual tasking in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2012;93(1):176–81.

    Article  PubMed  Google Scholar 

  84. Ricciardi L, Ricciardi D, Lena F, Plotnik M, Petracca M, Barricella S, et al. Working on asymmetry in Parkinson’s disease: randomized, controlled pilot study. Neurol Sci. 2015;36(8):1337–43.

    Google Scholar 

  85. Chong RK, Lee KH, Morgan J, Wakade C. Duration of step initiation predicts freezing in Parkinson’s disease. Acta Neurol Scand. 2015;132(2):105–10.

    Google Scholar 

  86. Ledger S, Galvin R, Lynch D, Stokes EK. A randomised controlled trial evaluating the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson’s disease. BMC Neurol. 2008;8:46.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, et al. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil. 2005;19(7):695–713.

    Article  CAS  PubMed  Google Scholar 

  88. Ellis T, de Goede CJ, Feldman RG, Wolters EC, Kwakkel G, Wagenaar RC. Efficacy of a physical therapy program in patients with Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil. 2005;86(4):626–32.

    Article  PubMed  Google Scholar 

  89. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. 2009;24(8):1139–43.

    Article  PubMed  Google Scholar 

  90. Frazzitta G, Pezzoli G, Bertotti G, Maestri R. Asymmetry and freezing of gait in parkinsonian patients. J Neurol. 2013;260(1):71–6.

    Article  PubMed  Google Scholar 

  91. Smulders K, Esselink RA, Bloem BR, Cools R. Freezing of gait in Parkinson’s disease is related to impaired motor switching during stepping. Mov Disord. 2015;30(8):1090–7

    Google Scholar 

  92. Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36(10):2206–11.

    Article  PubMed  Google Scholar 

  93. Silver KH, Macko RF, Forrester LW, Goldberg AP, Smith GV. Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report. Neurorehabil Neural Repair. 2000;14(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  94. Saunders DH, Sanderson M, Brazzelli M, Greig CA, Mead GE. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2013;10, CD003316.

    Google Scholar 

  95. Brazzelli M, Saunders DH, Greig CA, Mead GE. Physical fitness training for patients with stroke: updated review. Stroke. 2012;43(4):e39–40.

    Article  PubMed  Google Scholar 

  96. Lamontagne A, Fung J. Faster is better: implications for speed-intensive gait training after stroke. Stroke. 2004;35(11):2543–8.

    Article  PubMed  Google Scholar 

  97. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke. 2002;33(2):553–8.

    Article  PubMed  Google Scholar 

  98. Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91(3):392–403.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mang CS, Campbell KL, Ross CJ, Boyd LA. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther. 2013;93(12):1707–16.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 2011;7(2):76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Boss HM, Van Schaik SM, Deijle IA, de Melker EC, van den Berg BT, Scherder EJ, et al. A randomised controlled trial of aerobic exercise after transient ischaemic attack or minor stroke to prevent cognitive decline: the MoveIT study protocol. BMJ Open. 2014;4(12):e007065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moore SA, Hallsworth K, Jakovljevic DG, Blamire AM, He J, Ford GA, et al. Effects of community exercise therapy on metabolic, brain, physical, and cognitive function following stroke: a randomized controlled pilot trial. Neurorehabil Neural Repair. 2015;29(7):623–35.

    Google Scholar 

  103. Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, et al. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture. 2011;33(2):309–13.

    Article  PubMed  Google Scholar 

  104. Awad LN, Reisman DS, Kesar TM, Binder-Macleod SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil. 2014;95(5):840–8.

    Article  PubMed  Google Scholar 

  105. Madhavan S, Shah B. Enhancing motor skill learning with transcranial direct current stimulation - a concise review with applications to stroke. Front Psych. 2012;3:66.

    Google Scholar 

  106. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson’s disease: a systematic review. Transl Neurodegener. 2014;3(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hackney ME, Earhart GM. Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom. J Rehabil Med. 2009;41(6):475–81.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hackney ME, Earhart GM. Effects of dance on gait and balance in Parkinson’s disease: a comparison of partnered and nonpartnered dance movement. Neurorehabil Neural Repair. 2010;24(4):384–92.

    Article  PubMed  Google Scholar 

  109. Hackney ME, Kantorovich S, Levin R, Earhart GM. Effects of tango on functional mobility in Parkinson’s disease: a preliminary study. J Neurol Phys Ther. 2007;31(4):173–9.

    Article  PubMed  Google Scholar 

  110. McKee KE, Hackney ME. The effects of adapted tango on spatial cognition and disease severity in Parkinson’s disease. J Mot Behav. 2013;45(6):519–29.

    Article  PubMed  Google Scholar 

  111. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–30.

    Article  PubMed  Google Scholar 

  112. Heyward VH. Advanced fitness assessment and exercise prescription. 6th ed. Champaign, IL: Human Kinetics; 2010.

    Google Scholar 

  113. Kraft E. Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19(1–2):248–63.

    Article  PubMed  Google Scholar 

  114. Ratey JJ, Loehr JE. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev Neurosci. 2011;22(2):171–85.

    Article  PubMed  Google Scholar 

  115. Tanaka K, Quadros Jr AC, Santos RF, Stella F, Gobbi LT, Gobbi S. Benefits of physical exercise on executive functions in older people with Parkinson’s disease. Brain Cogn. 2009;69(2):435–41.

    Article  PubMed  Google Scholar 

  116. Cruise KE, Bucks RS, Loftus AM, Newton RU, Pegoraro R, Thomas MG. Exercise and Parkinson’s: benefits for cognition and quality of life. Acta Neurol Scand. 2011;123(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  117. Ridgel AL, Kim CH, Fickes EJ, Muller MD, Alberts JL. Changes in executive function after acute bouts of passive cycling in Parkinson’s disease. J Aging Phys Act. 2011;19(2):87–98.

    Article  PubMed  Google Scholar 

  118. dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Guedes da Silva K, Oliveira Tde P, Peterson Zomignani A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease–effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012;98(3):217–23.

    Google Scholar 

  119. Muller T, Muhlack S. Effect of exercise on reactivity and motor behaviour in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81(7):747–53.

    Article  PubMed  Google Scholar 

  120. Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson’s disease: a systematic review. Mov Disord. 2013;28(8):1034–49.

    Google Scholar 

  121. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–9.

    Article  CAS  PubMed  Google Scholar 

  122. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224(4):591–605.

    Article  CAS  PubMed  Google Scholar 

  123. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–86.

    Article  CAS  PubMed  Google Scholar 

  124. McCrate ME, Kaspar BK. Physical activity and neuroprotection in amyotrophic lateral sclerosis. Neuromolecular Med. 2008;10(2):108–17.

    Article  CAS  PubMed  Google Scholar 

  125. Klaus F, Amrein I. Running in laboratory and wild rodents: differences in context sensitivity and plasticity of hippocampal neurogenesis. Behav Brain Res. 2012;227(2):363–70.

    Google Scholar 

  126. Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472(7344):466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lau YS, Patki G, Das-Panja K, Le WD, Ahmad SO. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci. 2011;33(7):1264–74.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58(2):176–80.

    Article  PubMed  Google Scholar 

  130. Ten Brinke LF, Bolandzadeh N, Nagamatsu LS, Hsu CL, Davis JC, Miran-Khan K, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;49(4):248–54.

    Google Scholar 

  131. Rowley J, Fonov V, Wu O, Eskildsen SF, Schoemaker D, Wu L, et al. White matter abnormalities and structural hippocampal disconnections in amnestic mild cognitive impairment and Alzheimer’s disease. PLoS One. 2013;8(9):e74776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Voss MW, Heo S, Prakash RS, Erickson KI, Alves H, Chaddock L, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum Brain Mapp. 2013;34(11):2972–85.

    Article  PubMed  Google Scholar 

  133. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature. 1999;400(6743):418–9.

    Article  CAS  PubMed  Google Scholar 

  134. Nocera J, McGregor KM, Hass C, Crosson B. ‘Spin’ exercise improves semantic fluency in previously sedentary older adults. J Aging Phys Act. 2015;23(1):90–4.

    Google Scholar 

  135. McGregor KM, Heilman KM, Nocera JR, Patten C, Manini TM, Crosson B, et al. Aging, aerobic activity and interhemispheric communication. Brain Sci. 2012;2(4):634–48.

    Article  PubMed  PubMed Central  Google Scholar 

  136. McGregor KM, Nocera JR, Sudhyadhom A, Patten C, Manini TM, Kleim JA, et al. Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance. Front Aging Neurosci. 2013;5:66.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Smith BA, Goldberg NR, Meshul CK. Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse. Brain Res. 2011;1386:70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu FS, et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun. 2011;25(1):135–46.

    Article  CAS  PubMed  Google Scholar 

  139. Vucckovic MG, Li Q, Fisher B, Nacca A, Leahy RM, Walsh JP, et al. Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: in vivo imaging with [(1)F]fallypride. Mov Disord. 2010;25(16):2777–84.

    Article  Google Scholar 

  140. Cepeda C, Cummings DM, Hickey MA, Kleiman-Weiner M, Chen JY, Watson JB, et al. Rescuing the corticostriatal synaptic disconnection in the R6/2 mouse model of Huntington’s disease: exercise, adenosine receptors and ampakines. PLoS Curr. 2010;2. pii: RRN1182.

    Google Scholar 

  141. Ben-Ari S, Ofek K, Barbash S, Meiri H, Kovalev E, Greenberg DS, et al. Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance. J Cell Mol Med. 2012;16(3):555–68.

    Google Scholar 

  142. Ahlskog JE. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011;77(3):288–94.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hirsch MA, Farley BG. Exercise and neuroplasticity in persons living with Parkinson’s disease. Eur J Phys Rehabil Med. 2009;45(2):215–29.

    CAS  PubMed  Google Scholar 

  144. Alberts JL, Linder SM, Penko AL, Lowe MJ, Phillips M. It is not about the bike, it is about the pedaling: forced exercise and Parkinson’s disease. Exerc Sport Sci Rev. 2011;39(4):177–86.

    PubMed  Google Scholar 

  145. Hackney ME, Earhart GM. Health-related quality of life and alternative forms of exercise in Parkinson disease. Parkinsonism Relat Disord. 2009;15(9):644–8.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine E. Hackney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hackney, M.E., Nocera, J., Creel, T., Riebesell, M.D., Kesar, T. (2017). Exercise and Balance in Older Adults with Movement Disorders. In: Barbieri, F., Vitório, R. (eds) Locomotion and Posture in Older Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-48980-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48980-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48979-7

  • Online ISBN: 978-3-319-48980-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics