Skip to main content

Reservoir Evaluation by DFA Measurements and Thermodynamic Analysis

  • Chapter
Springer Handbook of Petroleum Technology

Part of the book series: Springer Handbooks ((SHB))

  • 5546 Accesses

Abstract

Downhole fluid analysis (GlossaryTerm

DFA

) has enabled the cost-effective measurement in oil wells of a variety of chemical properties of reservoir crude oils. An immediate benefit of DFA is the improvement of the sample quality of the reservoir fluid in the subsurface environment. In addition, this early feedback on the nature of the reservoir fluid aids in understanding key reservoir challenges. DFA also enables the accurate determination of fluid gradients in the reservoir in both vertical and lateral directions. These gradients can then be analyzed in a thermodynamic equation of state (GlossaryTerm

EoS

) context; the gas-liquid properties can be modeled with the cubic EoS and the asphaltene gradients equilibrium can be modeled with the Flory–Huggins–Zuo (GlossaryTerm

FHZ

) EoS with its reliance on the Yen–Mullins model of asphaltenes. Time-dependent processes in geologic time can be modeled by adding appropriate dynamic terms to the EoS. Simple thermodynamic models can then be used to understand distributions of key fluid properties for reservoir crude oils and aid in simulating production. This thermodynamic analysis of the geodynamics of reservoir fluids fills a gap in the industry's modeling of reservoir fluids. Traditional basin modeling predicts what fluids enter the reservoir. This new geodynamic modeling coupled with DFA measurements determines what transpired in geologic time in regards to fluid distributions within the reservoir. The output of this fluid geodynamic modeling can then be used as input for traditional reservoir simulation for production. This new understanding of reservoir fluid geodynamics is made possible by new DFA measurements coupled with new FHZ EoS with the Yen–Mullins model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.D. McCain: The Properties of Petroleum Fluids (PennWell, Tulsa 1990)

    Google Scholar 

  2. O.C. Mullins: The Physics of Reservoir Fluids: Discovery Through Downhole Fluid Analysis (Schlumberger, Houston 2008)

    Google Scholar 

  3. O.C. Mullins, K. Wang, D. Hernandez, A.E. Pomerantz, J.Y. Zuo, P.S. Hammond, C. Dong, H. Elshahawi, D.J. Seifert: Characterization of asphaltene transport over geologic time aids in explaining the distribution of heavy oils and solid hydrocarbons in reservoirs, SPE ATCE 170730 (2014)

    Google Scholar 

  4. T.H. Zimmerman, J.J. Pop, J.L. Perkins: Down hole tool for determination of formation properties, US Patent 4860581 (1989)

    Google Scholar 

  5. O.C. Mullins, E.Y. Sheu, A. Hammami, A.G. Marshall (Eds.): Asphaltenes, Heavy Oil and Petroleomics (Springer, New York 2007)

    Google Scholar 

  6. O.C. Mullins: The modified Yen model, Energ. Fuels 24, 2179–2207 (2010)

    Article  CAS  Google Scholar 

  7. D.E. Freed, O.C. Mullins, J.Y. Zuo: Asphaltene gradients in the presence of GOR gradients, Energ. Fuels 24(7), 3942–3949 (2010)

    Article  CAS  Google Scholar 

  8. J.Y. Zuo, O.C. Mullins, D.E. Freed, C. Dong, H. Elshahawi, D.J. Seifert: Advances of the Flory–Huggins–Zuo equation of state for asphaltene gradients and formation evaluation, Energ. Fuels 27, 1722–1735 (2013)

    Article  CAS  Google Scholar 

  9. B. Raghuraman, G. Gustavson, O.C. Mullins, P. Rabbito: Spectroscopic pH measurement for high temperatures, pressures and ionic strength, AIChE Journal 52, 3257 (2006)

    Article  CAS  Google Scholar 

  10. G. Fujisawa, M.A. van Agthoven, F. Jenet, P.A. Rabbito, O.C. Mullins: Near-infrared compositional analysis of gas and condensate reservoir fluids at elevated pressures and temperatures, Appl. Spectrosc. 56(12), 1615–1620 (2002)

    Article  CAS  Google Scholar 

  11. A.R. Smits, D.V. Fincher, K. Nishida, O.C. Mullins, R.J. Schroeder, T. Yamate: In situ optical fluid analysis as an aid to wireline formtion sampling, SPE Form, Evaluation 10(2), 91–98 (1995)

    CAS  Google Scholar 

  12. C. Avant, S. Daungkaew, B.K. Behera, S. Danpanich, W. Laprabang, I. De Santo, G. Heath, K. Osman, Z.A. Khan, J. Russel, P. Sims, M. Slapal, G. Tevis: Testing the limits in extreme well conditions, Oilfield Rev. 24(3), 4–19 (2012)

    Google Scholar 

  13. V. Achourov, A. Gisolf, A. Kansy, K.O. Eriksen, M. O'Keefe, T. Pfeiffer: Applications of accurate in-situ fluid analysis in the North Sea, SPE 145643, Aberdeen (2011)

    Google Scholar 

  14. O.C. Mullins, J.Y. Zuo, D. Seifert, M. Zeybek: Clusters of asphaltene nanoaggregates observed in oil reservoirs, Energ. Fuels 27, 1752–1761 (2013)

    Article  CAS  Google Scholar 

  15. T. Pfeiffer, Z. Reza, W.D. McCain, D. Schechter, O.C. Mullins: Determination of fluid composition equilibrium – A substantially superior way to assess reservoir connectivity than formation pressure surveys, Proc. SPWLA, Annu. Symp., SPWLA-2011-EEE, Colorado Springs (2011)

    Google Scholar 

  16. D.J. Seifert, M. Zeybek, C. Dong, J.Y. Zuo, O.C. Mullins: Black oil, heavy oil and tar mats, ADIPEC 161144, Abu Dhabi (2012)

    Google Scholar 

  17. K. Wang, Y. Chen, J.Y. Zuo, O.C. Mullins: The dynamic Flory--Huggins--Zuo equation of state, Energy 91, 430–440 (2015)

    Article  Google Scholar 

  18. R. Jackson, J.Y. Zuo, A. Agarwal, B. Herold, S. Kumar, I. De Santo, H. Dumont, C. Ayan, O.C. Mullins: Mapping and modelling large viscosity and asphaltene variations in a reservoir undergoing active biodegradation, SPE ATCE 170794, Amsterdam (2014)

    Google Scholar 

  19. J.Y. Zuo, R. Jackson, A. Agarwal, B. Herold, S. Kumar, I. De Santo, H. Dumont, M. Beardsell, O.C. Mullins, C. Ayan: Diffusion model coupled with the Flory–Huggins–Zuo equation of state and Yen–Mullins model accounts for large viscosity and asphaltene variations in a reservoir undergoing active biodegradation, Energ. Fuels 29(3), 1447–1460 (2015)

    Article  CAS  Google Scholar 

  20. B.N. Naidu, V. Kothari, N.J. Whitely, J. Guttormsen, S.D. Burley: Calibrated basin modelling to understand hydrocarbon distribution in Barmer Basin, India, Proc. AAPG Int. Conv. Exhib., Singapore (2012)

    Google Scholar 

  21. I.M. Head, D.M. Jones, S.R. Larter: Biological activity in the deep subsurface and the origin of heavy oil, Nature 426, 344–352 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Fujisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fujisawa, G., Mullins, O.C. (2017). Reservoir Evaluation by DFA Measurements and Thermodynamic Analysis. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_7

Download citation

Publish with us

Policies and ethics