Skip to main content

An Improved Teaching-Learning Based Optimization for Optimization of Flatness of a Strip During a Coiling Process

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10053))

Abstract

Performance enhancement of a teaching-learning based optimizer (TLBO) for strip flatness optimization during a coiling process is proposed. The method is termed improved teaching-learning based optimization (ITLBO). The new algorithm is achieved by modifying the teaching phase of the original TLBO. The design problem is set to find spool geometry and coiling tension in order to minimize flatness defects during the coiling process. Having implemented the new optimizer with flatness optimization for strip coiling, the results reveal that the proposed method gives a better optimum solution compared to the present state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung, J.Y., Im, Y.T.: Simulation of fuzzy shape control for cold-rolled strip with randomly irregular strip shape. J. Mater. Process. Tech. 63, 248–253 (1997)

    Article  Google Scholar 

  2. Jung, J.Y., Im, Y.T.: Fuzzy control algorithm for prediction of tension variations in hot rolling. J. Mater. Process. Tech. 96, 163–172 (1999)

    Article  Google Scholar 

  3. Kawanami, T., Asamura, T., Matsumoto, H.: Development of high-precision shape and crown control technology for strip rolling. J. Mater. Process. Tech. 22, 257–275 (1990)

    Article  Google Scholar 

  4. Kwon, H.C., Han, I.S., Chun, M.S.: Examination of thermal behavior of hot rolled coil based on the finite element modeling and thermal measurement. In: 10th International Conference on Technology of Plasticity, pp. 37–40 (2011)

    Google Scholar 

  5. Sims, R.B., Place, J.A.: The stresses in the reels of cold reduction mills. Br. J. Appl. Phys. 4, 213–216 (1953)

    Article  Google Scholar 

  6. Miller, D.B., Thornton, M.: Prediction of changes in flatness during coiling. In: 5th International Rolling Conference, pp. 73–78 (1990)

    Google Scholar 

  7. Sarban, A.A.: An elasto-plastic analysis for the prediction of changes in flatness during coiling. In: 2nd International Conference on Modelling of Metal Rolling Processes, pp. 92–100 (1996)

    Google Scholar 

  8. Yanagi, S., Hattori, S., Maeda, Y.: Analysis model for deformation of coil of thin strip under coiling process. J. JSTP. 39, 51–55 (1998)

    Google Scholar 

  9. Park, W.W., Kim, D.K., Kwon, H.C., Chun, M.S., Im, Y.T.: The effect of processing parameters on elastic deformation of the coil during the thin-strip coiling process. Metals Mater. Inter. 20, 719–726 (2014)

    Article  Google Scholar 

  10. Pholdee, N., Bureerat, S., Park, W.-W., Kim, D.-K., Im, Y.-T., Kwon, H.-C., Chun, M.-S.: Optimization of flatness of strip during coiling process based on evolutionary algorithms. Int. J. Precis. Eng. Manuf. 16(7), 1493–1499 (2015)

    Article  Google Scholar 

  11. Pholdee, N., Park, W.-W., Kim, D.-K., Im, Y.-T., Bureerat, S., Kwon, H.-C., Chun, M.-S.: Efficient hybrid evolutionary algorithm for optimization of a strip coiling process. Eng. Opt. 47(4), 521–532 (2015)

    Article  Google Scholar 

  12. Pholdee, N., Bureerat, S.: Passive vibration control of an automotive component using evolutionary optimization. J. Res. Appl. Mech. Eng. 1, 19–22 (2010)

    Google Scholar 

  13. Pholdee, N., Bureerat, S.: Surrogate-assisted evolutionary optimizers for multiobjective design of a torque arm structure. Appl. Mech. Mater. 101–102, 324–328 (2012)

    Google Scholar 

  14. Pholdee, N., Bureerat, S.: Performance enhancement of multiobjective evolutionary optimizers for truss design using an approximate gradient. Comput. Struct. 106–107, 115–124 (2012)

    Article  Google Scholar 

  15. Pholdee, N., Bureerat, S.: Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inform. Sci. 223, 136–152 (2013)

    Article  MathSciNet  Google Scholar 

  16. Bureerat, S., Limtragool, J.: Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem. Anal. Des. 44, 738–747 (2008)

    Article  Google Scholar 

  17. Srisoporn, S., Bureerat, S.: Geometrical design of plate-fin heat sinks using hybridization of MOEA and RSM. IEEE Trans. Compon. Packag. Technol. 31, 351–360 (2008)

    Article  Google Scholar 

  18. Yildiz, A.R.: A novel particle swarm optimization approach for product design and manufacturing. Int. J. Adv. Manuf. Tech. 40, 617–628 (2009)

    Article  Google Scholar 

  19. Goldstein, M.: DEEPSAM: a hybrid evolutionary algorithm for the prediction of biomolecules structure. In: Blesa, M.J., Blum, C., Cangelosi, A., Cutello, V., Di Nuovo, A., Pavone, M., Talbi, E.-G. (eds.) HM 2016. LNCS, vol. 9668, pp. 218–221. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39636-1_16

    Chapter  Google Scholar 

  20. Kumar, S., Dubey, A.K., Pandey, A.K.: Computer-aided genetic algorithm based multi-objective optimization of laser trepan drilling. Int. J. Precis. Eng. Manuf. 14, 1119–1125 (2013)

    Article  Google Scholar 

  21. Oladimeji, M.O., Turkey, M., Dudley, S.: A heuristic crossover enhanced evolutionary algorithm for clustering wireless sensor network. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 251–266. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31204-0_17

    Chapter  Google Scholar 

  22. Park, H.S., Nguyen, T.T.: Optimization of roll forming process with evolutionary algorithm for green product. Int. J. Precis. Eng. Manuf. 14, 2127–2135 (2013)

    Article  Google Scholar 

  23. Kandananond, K.: The optimization of a lathing process based on neural network and factorial design method. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 609–619. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42007-3_53

    Chapter  Google Scholar 

  24. Hetmaniok, E., Słota, D., Zielonka, A.: Solution of the inverse continuous casting problem with the aid of modified harmony search algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 402–411. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55224-3_38

    Chapter  Google Scholar 

  25. Tiwari, A., Oduguwa, V., Roy, R.: Rolling system design using evolutionary sequential process optimization. IEEE Trans. Evol. Comput. 12, 196–202 (2008)

    Article  Google Scholar 

  26. Chakraborti, N., Siva Kumar, B., Satish Babu, V., Moitra, S., Mukhopadhyay, A.: Optimizing surface profiles during hot rolling: a genetic algorithms based multi-objective optimization. Comp. Mater. Sci. 37, 159–165 (2006)

    Article  Google Scholar 

  27. Zhang, J., Wang, Y.: Defection recognition of cold rolling strip steel based on ACO algorithm with quantum action. In: Pan, Z., Cheok, A.D., Müller, W., Chang, M., Zhang, M. (eds.). LNCS, vol. 7145, pp. 263–271Springer, Heidelberg (2012). doi:10.1007/978-3-642-29050-3_26

    Chapter  Google Scholar 

  28. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimisation over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimisation: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Socha, K., Dorigo, M.: Ant colony optimisation for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimisation: a novel method for constrained mechanical design optimisation problems. Comput. Aided Design. 43, 303–315 (2011)

    Article  Google Scholar 

  32. Kashan, A.H.: An efficient algorithm for constrained global optimisation and application to mechanical engineering design: league championship algorithm (LCA). Comput. Aided Design. 43, 1769–1792 (2011)

    Article  Google Scholar 

  33. Kaveh, A., Talatahari, S.: A novel heuristic optimisation method: charged system search. Acta Mech. 213, 267–289 (2010)

    Article  MATH  Google Scholar 

  34. Choi, Y.J., Lee, M.C.: A downcoiler simulator for high performance coiling in hot strip mill lines. Int. J. Precis. Eng. Manuf. 10, 53–61 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Thailand Research Fund (TRF). The research grant from the POSCO was also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantiwat Pholdee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bureerat, S., Pholdee, N., Park, WW., Kim, DK. (2016). An Improved Teaching-Learning Based Optimization for Optimization of Flatness of a Strip During a Coiling Process. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2016. Lecture Notes in Computer Science(), vol 10053. Springer, Cham. https://doi.org/10.1007/978-3-319-49397-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49397-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49396-1

  • Online ISBN: 978-3-319-49397-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics