Skip to main content

Thermal Issues in Photovoltaics and Existing Solutions

  • Chapter
  • First Online:
Thermal Behavior of Photovoltaic Devices

Abstract

This chapter introduces the different effects of temperature on the performances of photovoltaic (PV) devices. Efficiency of the vast majority of photovoltaic devices drops when their temperature rises. An augmentation of temperature has other effects on certain types of PV devices such a promoting the regeneration of amorphous silicon cells. High device temperature is also a factor favoring different degradation mechanisms such as potential induced degradation (PID). All of these temperature-induced effects have important implications for the photovoltaic industry. Indeed, two different cells or modules with the same rated power in the standard test conditions (STC) , i.e. 1000 W m−2 of AM1.5 illumination and a cell temperature of 25 °C, may produce different electrical powers under real outdoor conditions and thus have different energy yields. To forecast accurately the energy production of PV plants, it is thus necessary to predict their operating temperature s. This chapter presents an overview of the models developed towards that end. Then, different strategies to reduce the operating temperature of PV devices are presented. Several active and passive cooling methods are introduced. The specificities of hybrid photovoltaic/thermal (PV-T) systems, which generate both heat and electricity, and building integrated photovoltaics (BIPV), where the PV modules are part of the building envelope, are discussed. Finally, the potential of radiative cooling and other thermal design approaches of solar cells and modules are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the exception of certain solar cells such as those made of amorphous silicon. Detailed explanations are given in Sect. 1.1.2.

  2. 2.

    See the definition in Sect. 2.1.

  3. 3.

    Bandgap or energy bandgap corresponds to the energy separating the valence band from the conduction band in a semiconductor.

  4. 4.

    a-Si: amorphous silicon. CdTe: cadmium telluride . c-Si: crystalline silicon. CIGS: copper indium gallium selenide . SHJ: silicon hetero-junction.

  5. 5.

    The performance ratio (PR) of a PV module is defined as the ratio between its actual energy yield and its maximum theoretical energy yield given by the incoming irradiance and the module nominal efficiency.

  6. 6.

    pc-Si stands for polycrystalline silicon. It is often used as a synonym of multi-crystalline silicon (mc-Si) but these denominations refer to materials with different grain sizes according to the terminology defined by Basore (1994). Grain sizes >10 cm: c-Si (monocrystalline silicon); 1 mm–10 cm: mc-Si (multicrystalline silicon); 1 μm–1 mm: pc-Si; <1 μm: μc-Si (microcrystalline silicon).

  7. 7.

    The prototype modules in Krauter (2004) weight 200 kg.

References

  • Agathokleous RA, Kalogirou SA (2016) Double skin facades (DSF) and building integrated photovoltaics (BIPV): a review of configurations and heat transfer characteristics. Renew Energy 89:743–756. Doi:10.1016/j.renene.2015.12.043

    Article  Google Scholar 

  • Aly AM (2016) On the evaluation of wind loads on solar panels: the scale issue. Sol Energy 135:423–434. Doi:10.1016/j.solener.2016.06.018

    Article  Google Scholar 

  • Armstrong S, Hurley WG (2010) A thermal model for photovoltaic panels under varying atmospheric conditions. Appl Therm Eng 30:1488–1495. Doi:10.1016/j.applthermaleng.2010.03.012

    Article  Google Scholar 

  • Basore P (1994) Defining terms for crystalline silicon solar cells. Prog Photovoltaics Res Appl 2:177–179

    Article  Google Scholar 

  • Beauchamp WT, Tuttle-Hart T (1995) Patent n° US5449413 A—“UV/IR reflecting solar cell cover”

    Google Scholar 

  • Beauchamp WT, Tuttle-Hart T, Sanders ML (1993) Blue/red reflecting solar cell covers for GaAs cells. In: Proceedings of the 23rd IEEE photovoltaic specialist conference. pp 1487–1490

    Google Scholar 

  • Bloem JJ (2008) Evaluation of a PV-integrated building application in a well-controlled outdoor test environment. Build Environ 43:205–216. Doi:10.1016/j.buildenv.2006.10.041

    Article  Google Scholar 

  • Branz HM (2003) The hydrogen collision model of metastability after 5 years: experimental tests and theoretical extensions. Sol Energy Mater Sol Cells 78:425–445. Doi:10.1016/S0927-0248(02)00446-4

    Article  Google Scholar 

  • Brinkworth BJ, Cross BM, Marshall RH, Yang H (1997) Thermal regulation of photovoltaic cladding consequences. Sol Energy 61:169–178

    Article  Google Scholar 

  • Carlson DE, Lin G, Ganguly G (2000) Temperature dependence of amorphous silicon solar cell PV parameters. In: Proceedings of the 28th IEEE photovoltaic specialist conference

    Google Scholar 

  • Chandrasekar M, Rajkumar S, Valavan D (2015) A review on the thermal regulation techniques for non integrated flat PV modules mounted on building top. Energy Build 86:692–697. Doi:10.1016/j.enbuild.2014.10.071

    Article  Google Scholar 

  • Chintapalli M, Diskin M, Guha I (2010) Improving solar cell efficiency: a cooler approach. http://web.mit.edu/3.042/team5_10/Poster.html. Accessed 22 Aug 2016

  • Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energy 87:365–379. Doi:10.1016/j.apenergy.2009.06.037

    Article  Google Scholar 

  • Cristi N, Macq A, Martin-Carron L (2016) Evaporating pure rainwater to increase the yield of commercial-size PV arrays. In: Proceedings of the 32nd European photovoltaic solar energy conference

    Google Scholar 

  • Cuce E, Bali T, Sekucoglu SA (2011) Effects of passive cooling on performance of silicon photovoltaic cells. Int J Low-Carbon Technol 6:299–308. Doi:10.1093/ijlct/ctr018

  • Dobos AP (2014) PVWatts Version 5 Manual (NREL/TP-6A20-62641)

    Google Scholar 

  • Dupré O, Vaillon R (2014) Optimizations of photovoltaic cells including the minimization of internal heat sources. J Renew Sustain Energy 6:11201. Doi:10.1063/1.4828367

    Article  Google Scholar 

  • Dupré O, Vaillon R, Green MA (2015) Experimental assessment of temperature coefficient theories for silicon solar cells. IEEE J Photovoltaics 1–5. Doi:10.1109/JPHOTOV.2015.2489864

  • Escarré J, Li H, Sansonnens L et al (2015) When PV modules are becoming real building elements: white solar module, a revolution for BIPV. In: Proceedings of the 42nd IEEE photovoltaic specialist conference

    Google Scholar 

  • First Solar (2014) First solar series 3 Black PlusTM PV Module

    Google Scholar 

  • Fischer D, Bichsel F, de Bruijn S et al (2009) Positive effective temperature coefficient of power of +0.75%/°C in flexible a-Si modules in building integrated installations. In: Proceedings of the 24th European photovoltaic solar energy conference. pp 3505–3508

    Google Scholar 

  • Fraunhofer (2016) Photovoltaics report

    Google Scholar 

  • Fuentes MK (1987) A simplified thermal model for flat-plate photovoltaic arrays. Sandia report

    Google Scholar 

  • Gentle AR, Smith GB (2016) Is enhanced radiative cooling of solar cell modules worth pursuing? Sol Energy Mater Sol Cells 150:39–42. Doi:10.1016/j.solmat.2016.01.039

    Article  Google Scholar 

  • Gentle AR, Smith GB (2015) A subambient open roof surface under the mid-summer sun. Adv Sci 2:1–4. Doi:10.1002/advs.201500119

  • Good C (2016) Environmental impact assessments of hybrid photovoltaic-thermal (PV/T) systems—a review. Renew Sustain Energy Rev 55:234–239. Doi:10.1016/j.rser.2015.10.156

    Article  Google Scholar 

  • Green MA (2003) General temperature dependence of solar cell performance and implications for device modelling. Prog Photovoltaics Res Appl 11:333–340. Doi:10.1002/pip.496

    Article  Google Scholar 

  • Guay NG, Hansen CW, Robinson CD et al (2016) Improving module temperature measurements using averaging resistive temperature devices. In: Proceedings of the 43rd IEEE photovoltaic specialist conference

    Google Scholar 

  • Halsted RE (1957) Temperature consideration in solar battery development. J Appl Phys 28:1131. Doi:10.1063/1.1722592

    Article  Google Scholar 

  • Hara S, Kasu M, Matsui N (2016) Estimation method of solar cell temperature using meteorological data in mega solar power plant. IEEE J Photovoltaics 1–6. Doi:10.1109/JPHOTOV.2016.2589363

  • Hegedus S (2013) Review of photovoltaic module energy yield (kWh/kW): comparison of crystalline Si and thin film technologies. Wiley Interdisc Rev Energy Environ 2:218–233. Doi:10.1002/wene.61

    Article  Google Scholar 

  • Heinstein P, Ballif C, Perret-Aebi LE (2013) Building integrated photovoltaics (BIPV): review, potentials, barriers and myths. Green 3:125–156. Doi:10.1515/green-2013-0020

    Article  Google Scholar 

  • Herschitz R, Bogorad A (1994) Space environmental testing of blue red reflecting coverglasses for gallium arsenide and high efficiency silicon solar cells. In: Proceedings of the 1st IEEE world conference photovoltaic energy conversion (WCPEC). Doi:10.1109/WCPEC.1994.521657

  • Hoang P, Bourdin V, Liu Q et al (2014) Coupling optical and thermal models to accurately predict PV panel electricity production. Sol Energy Mater Sol Cells 125:325–338. Doi:10.1016/j.solmat.2013.11.032

    Article  Google Scholar 

  • Hoffmann S, Koehl M (2012) Effect of humidity and temperature on the potential-induced degradation. Prog Photovoltaics Res Appl. Doi:10.1002/pip

  • Jones AD, Underwood CP (2001) A thermal model for photovoltaic systems. Sol Energy 70:349–359. Doi:10.1016/S0038-092X(00)00149-3

    Article  Google Scholar 

  • Jubayer CM, Hangan H (2016) A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels. J Wind Eng Ind Aerodyn 153:60–70. Doi:10.1016/j.jweia.2016.03.009

    Article  Google Scholar 

  • Kant K, Shukla A, Sharma A, Biwole PH (2016) Thermal response of poly-crystalline silicon photovoltaic panels: numerical simulation and experimental study. Sol Energy 134:147–155. Doi:10.1016/j.solener.2016.05.002

    Article  Google Scholar 

  • Kawajiri K, Oozeki T, Genchi Y (2011) Effect of temperature on PV potential in the world. Environ Sci Technol 45:9030–9035. Doi:10.1021/es200635x

    Article  Google Scholar 

  • Kim TH, Park NC, Kim DH (2013) The effect of moisture on the degradation mechanism of multi-crystalline silicon photovoltaic module. Microelectron Reliab 53:1823–1827. Doi:10.1016/j.microrel.2013.07.047

    Article  Google Scholar 

  • King DL, Boyson WE, Kratochvill JA (2004) Photovoltaic Array Performance Model. Sandia report

    Google Scholar 

  • Koehl M, Heck M, Wiesmeier S, Wirth J (2011) Modeling of the nominal operating cell temperature based on outdoor weathering. Sol Energy Mater Sol Cells 95:1638–1646. Doi:10.1016/j.solmat.2011.01.020

    Article  Google Scholar 

  • Kondo M, Nishio H, Kurata S et al (1997) Effective conversion efficiency enhancement of amorphous silicon modules by operation temperature elevation. Sol Energy Mater Sol Cells 49:1–6. Doi:10.1016/S0927-0248(97)00168-2

    Article  Google Scholar 

  • Krauter S (2004) Increased electrical yield via water flow over the front of photovoltaic panels. Sol Energy Mater Sol Cells 82:131–137. Doi:10.1016/j.solmat.2004.01.011

    Article  Google Scholar 

  • Krauter S, Hanitsch R (1996) Actual optical and thermal performance of PV-modules. Sol Energy Mater Sol Cells 41–42:557–574. Doi:10.1016/0927-0248(95)00143-3

    Article  Google Scholar 

  • Krauter S, Hanitsch R, Moreira L (1996) New optical and thermal enhanced PV-modules performing 12% better under true module rating conditions. In: Proceedings of the 25th IEEE photovoltaic specialist conference. Doi:10.1109/PVSC.1996.564377

  • Kurtz S, Whitfield K, Tamizhmani G et al (2011) Evaluation of high-temperature exposure of photovoltaic modules. Prog Photovoltaics Res Appl 954–965. Doi:10.1002/pip

  • Lai CM, Hokoi S (2014) Solar façades: a review. Build Environ 91:152–165. Doi:10.1016/j.buildenv.2015.01.007

    Article  Google Scholar 

  • Landis GA, Jenkins P, Scheimant D, Ryne R (2004) Extended temperature solar cell technology development. In: Proceedings of the 2nd international energy conversion engineering conference. pp 1–7

    Google Scholar 

  • Lau GE, Sanvicente E, Yeoh GH et al (2012) Modelling of natural convection in vertical and tilted photovoltaic applications. Energy Build 55:810–822. Doi:10.1016/j.enbuild.2012.10.014

    Article  Google Scholar 

  • Lee B, Liu JZ, Sun B et al (2008) Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV) cell. eXPRESS Polym Lett 2:357–363. Doi:10.3144/expresspolymlett.2008.42

  • Macq A, Mercier des Rochettes L, Martin-Carron L, et al (2016) A use of artificial intelligence for improving PV array performance (empirical approach). In: Proceedings of the 32nd European photovoltaic solar energy conference and exhibition

    Google Scholar 

  • Maghanga CM, Niklasson GA, Granqvist CG, Mwamburi M (2011) Spectrally selective reflector surfaces for heat reduction in concentrator solar cells: modeling and applications of TiO2:Nb-based thin films. Appl Opt 50:3296–302. Doi:10.1364/AO.50.003296

  • Makrides G, Zinsser B, Phinikarides A et al (2012) Temperature and thermal annealing effects on different photovoltaic technologies. Renew Energy 43:407–417. Doi:10.1016/j.renene.2011.11.046

    Article  Google Scholar 

  • Micheli L, Sarmah N, Luo X et al (2012) Infrared reflecting coverglasses for multijunction cells in a terrestrial high-concentrating photovoltaic system. In: Proceedings of the 27th European photovoltaic solar energy conference and exhibition. pp 266–270

    Google Scholar 

  • Moser D, Pichler M, Nikolaeva-Dimitrova M (2013) Filtering procedures for reliable outdoor temperature coefficients in different photovoltaic technologies. J Sol Energy Eng 136:1–10. Doi:10.1115/1.4024931

    Article  Google Scholar 

  • Nardone M, Green B (2015) COMSOL-PV : a unified platform for numerical simulation of solar cells an modules. In: COMSOL conference proceedings

    Google Scholar 

  • Naumann V, Lausch D, Hähnel A et al (2014) Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells. Sol Energy Mater Sol Cells 120:383–389. Doi:10.1016/j.solmat.2013.06.015

    Article  Google Scholar 

  • Notton G, Cristofari C, Mattei M, Poggi P (2005) Modelling of a double-glass photovoltaic module using finite differences. Appl Therm Eng 25:2854–2877. Doi:10.1016/j.applthermaleng.2005.02.008

    Article  Google Scholar 

  • Odeh S, Behnia M (2009) Improving photovoltaic module efficiency using water cooling. Heat Transf Eng 30:499–505. Doi:10.1080/01457630802529214

    Article  Google Scholar 

  • Palyvos JA (2008) A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Appl Therm Eng 28:801–808. Doi:10.1016/j.applthermaleng.2007.12.005

    Article  Google Scholar 

  • Pauling L (1988) General chemistry. Dover, Mineola, New York

    Google Scholar 

  • Peike C, Hoffmann S, Hülsmann P et al (2013) Origin of damp-heat induced cell degradation. Sol Energy Mater Sol Cells 116:49–54. Doi:10.1016/j.solmat.2013.03.022

    Article  Google Scholar 

  • Prince MB (1955) Silicon solar energy converters. J Appl Phys 26:534–540. Doi:10.1063/1.1722034

    Article  Google Scholar 

  • Raman AP, Anoma MA, Zhu L et al (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:540–544. Doi:10.1038/nature13883

    Article  Google Scholar 

  • Rosell JI, Ibanez M (2006) Modelling power output in photovoltaic modules for outdoor operating conditions. Energy Convers Manag 47:2424–2430. Doi:10.1016/j.enconman.2005.11.004

    Article  Google Scholar 

  • Ross R, Gonzalez C (1980) Reference conditions for reporting terrestrial photovoltaic performance. In: AS/ISES annual meeting. pp 1091–1097

    Google Scholar 

  • Royne A, Dey CJ, Mills DR (2005) Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells 86:451–483

    Article  Google Scholar 

  • Rubin M (1985) Optical properties of soda lime silica glasses. Sol Energy Mater 12:275–288. Doi:10.1016/0165-1633(85)90052-8

    Article  Google Scholar 

  • Rus-Casas C, Aguilar JD, Rodrigo P et al (2014) Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Convers Manag 78:527–536. Doi:10.1016/j.enconman.2013.11.006

    Article  Google Scholar 

  • Safi TST, Munday JJN (2015) Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments. Opt Express 23:A1120. Doi:10.1364/OE.23.0A1120

    Article  Google Scholar 

  • Schwingshackl C, Petitta M, Wagner JE et al (2013) Wind effect on PV module temperature: analysis of different techniques for an accurate estimation. Energy Procedia 40:77–86. Doi:10.1016/j.egypro.2013.08.010

    Article  Google Scholar 

  • Shademan M, Hangan H (2009) Wind loading on solar panels at different inclination angles. In: Proceedings of the 11th Americas conference on wind engineering

    Google Scholar 

  • Silva JP, Nofuentes G, Munoz JV (2010) Spectral reflectance patterns of photovoltaic modules and their thermal effects. J Sol Energy Eng Asme 132:13. Doi:10.1115/1.4002246

    Article  Google Scholar 

  • Silvaco (2016) SILVACO. http://www.silvaco.com/products/tcad/device_simulation/atlas/atlas.html. Accessed 22 Aug 2016

  • Silverman TJ, Jahn U, Friesen G et al. (2014) Characterisation of performance of thin-film photovoltaic technologies (from Report IEA-PVPS T13-02:2014)

    Google Scholar 

  • Skoplaki E, Palyvos JA (2009a) Operating temperature of photovoltaic modules: a survey of pertinent correlations. Renew Energy 34:23–29. Doi:10.1016/j.renene.2008.04.009

    Article  Google Scholar 

  • Skoplaki E, Palyvos JA (2009b) On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy 83:614–624. Doi:10.1016/j.solener.2008.10.008

    Article  Google Scholar 

  • Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31:292–294. Doi:10.1063/1.89674

    Article  Google Scholar 

  • Strevel N, Trippel L, Gloeckler M, Solar F (2012) First solar : greater energy yields in high-temperature conditions performance characterization and superior energy yield of first solar PV power plants in high-temperature conditions. Photovoltaics Int 1–6

    Google Scholar 

  • Tina GM, Rosa-Clot M, Rosa-Clot P, Scandura PF (2012) Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy 39:17–26. Doi:10.1016/j.energy.2011.08.053

    Article  Google Scholar 

  • Trapani K, Redon Santafé M (2014) A review of floating photovoltaic installations: 2007–2013. Prog Photovoltaics Res Appl 23:524–532

    Article  Google Scholar 

  • Virtuani A, Pavanello D, Friesen G (2010) Overview of temperature coefficients of different thin film photovoltaic technologies. In: Proceedings of the 25th European photovoltaic solar energy conference

    Google Scholar 

  • Weiss L, Amara M, Ménézo C (2016) Impact of radiative-heat transfer on photovoltaic module temperature. Prog Photovoltaics Res Appl 24:12–27

    Google Scholar 

  • Witmer L (2010) Quantification of the passive cooling of photovoltaics using a green roof. PhD thesis

    Google Scholar 

  • Wysocki JJ, Rappaport P (1960) Effect of temperature on photovoltaic solar energy conversion. J Appl Phys 31:571–578

    Article  Google Scholar 

  • Zhao J, Wang A, Campbell P, Green MA (1999) 22.7 % efficient silicon photovoltaic modules with textured front surface. IEEE Trans Electron Devices 46:1495–1497. Doi:10.1109/16.772498

    Article  Google Scholar 

  • Zhu L, Raman A, Wang KX et al (2014) Radiative cooling of solar cells. Optica 1:24–26. Doi:10.1364/OPTICA.1.000032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dupré, O., Vaillon, R., Green, M.A. (2017). Thermal Issues in Photovoltaics and Existing Solutions. In: Thermal Behavior of Photovoltaic Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-49457-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49457-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49456-2

  • Online ISBN: 978-3-319-49457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics