Skip to main content

Genome Analysis

  • Chapter
  • First Online:
The Jatropha Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 501 Accesses

Abstract

In order to accelerate basic and applied researches that involve genetic improvement through molecular breeding, comprehensive analyses of genes and the genome of Jatropha curcas have been conducted using both conventional and advanced technologies. The first publicly available draft sequence of the genome of J. curcas was reported in 2011, and an updated genome sequence, which is 297 Mb long and covers 99% of the euchromatic regions of the genome, was released in 2012. This genome sequence information has served as a reference for transcriptome analysis and the creation of SSR and SNP markers. The latest genome sequence information with longer scaffold length is now available, and most of the scaffolds have been anchored on the genetic linkage map. The genomic sequence and linkage map provide a valuable resource for basic and applied researches on J. curcas as well as comparative genomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour A, Tsuchimoto S, Sakai H, Ohmido N, Fukui K (2013) Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L. Biotechnol Biofuels 6:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alipour A, Cartagena JA, Tsuchimoto S, Sakai H, Ohmido N, Fukui K (2014) Identification and characterization of novel Gypsy-type retrotransposons in a biodiesel crop, Jatropha curcas L. Plant Mol Biol Rep 32:923–930

    Article  CAS  Google Scholar 

  • Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55:365–378

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Asamizu E, Ichihara H, Nakaya A, Nakamura Y, Hirakawa H, Ishii T, Tamura T, Fukami-Kobayashi K, Nakajima Y, Tabata S (2014) Plant Genome DataBase Japan (PGDBj): a portal website for the integration of plant genome-related databases. Plant Cell Physiol 55:e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MH, Mantri SS, Sharma A, Srivastava A, Trivedi I, Gupta P, Mohanty CS, Sawant SV, Tuli R (2010) Complete sequence and organisation of the Jatropha curcas (Euphorbiaceae) chloroplast genome. Tree Genet Genomes 6:941–952

    Article  Google Scholar 

  • Awoleye F, Duren M, Dolezel J, Novak FJ (1994) Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding. Euphytica 76:195–202

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86:2273–2282

    Article  CAS  Google Scholar 

  • Basha SD, Sujatha M (2009) Genetic analysis of Jatropha species andinterspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica 168:197–214

    Article  CAS  Google Scholar 

  • Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brendel V, Kleffe J (1998) Prediction of locally optimal splice sites in plant pre-mRNA with applications to gene identification in Arabidopsis thaliana genomic DNA. Nucleic Acids Res 26:4748–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic. DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CR, Clarindoa WR, Praça MM, Araújoa FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617

    Article  CAS  Google Scholar 

  • Ceballos H, Okogbenin E, Pérez JC, López-Valle LAB, Debouck D (2010) Cassava. In: Bradshaw JE (ed) Root and tuber crops, handbook of plant breeding, vol 7. Springer, New York, pp 53–96

    Chapter  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Hu Q, Zhang Y, Lu C, Kuang H (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42(Database issue):D1176–D1181

    Google Scholar 

  • Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information, In: Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB), 99, pp 45–56

    Google Scholar 

  • Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FA, Da Silva MJ (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Galli V, Guzman F, de Oliveira LF, Loss-Morais G, Körbes AP, Silva SD, Margis-Pinheiro MM, Margis R (2014) Identifying microRNAs and transcript targets in Jatropha seeds. PLoS One 9:e83727

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes KA, Almeida TC, Gesteira AS, Lôbo IP, Guimarães ACR, de Miranda AB, Van Sluys MA, da Cruz RS, Cascardo JCM, Carels N (2010) ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genom Insights 3:29–56

    CAS  Google Scholar 

  • Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:7–1314

    Article  Google Scholar 

  • Grover A, Kumari M, Singh S, Rathode SS, Gupta SM, Pandey P, Gilotra S, Kumar D, Arif M, Ahmed Z (2014) Analysis of Jatropha curcas transcriptome for oil enhancement and genic markers. Physiol Mol Biol Plants 20:139–142

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Idris A, Mantri S, Asif MH, Yadav HK, Roy JK, Tuli R, Mohanty CS, Sawant SV (2012) Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L. Mol Breed 30:1325–1335

    Article  CAS  Google Scholar 

  • Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouzé P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T, Toyoda A, Fujiyama A, Tabata S, Fukui K, Sato S (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:77–868

    Article  Google Scholar 

  • Huang X, Yang SP, Chinwalla AT, Hillier LW, Minx P, Mardis ER, Wilson RK (2006) Application of a superword array in genome assembly. Nucleic Acids Res 34:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:40–1236

    Article  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21:93–487

    Google Scholar 

  • King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenerg Res 4:211–221

    Article  Google Scholar 

  • King AJ, Montes LR, Clarke JG, Affleck J, Li Y, Witsenboer H, van der Vossen E, van der Linde P, Tripathi Y, Tavares E, Shukla P, Rajasekaran T, van Loo EN, Graham IA (2013) Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 11:986–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laosatit K, Tanya P, Saensuk C, Srinives P (2013) Development and characterization of EST-SSR markers from Jatropha curcas EST database and their transferability across jatropha-related species/genus. Biologia 68:41–47

    Article  CAS  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukashin A, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KI, Webster GL (1966) Chromosome numbers in the Euphorbiaceae. Brittonia 18:372–379

    Article  Google Scholar 

  • Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(Database issue):D213–D221

    Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) TreeTFDB: an integrative database of the transcription factors from six economically important tree crops for functional predictions and comparative and functional genomics. DNA Res 20:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA, Singh KK, Madasamy P (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genom 11:606. doi:10.1186/1471-2164-11-606

    Article  Google Scholar 

  • Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genom 12:191

    Article  CAS  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio LRM, Salvador AFT, Jongschaap RE, Perez CAA, Sandoval JEB, Trindate LM, Visser RG, van Loo EN (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 14:77

    Article  Google Scholar 

  • Parra G, Bradnam K, Korf I (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:7–1061

    Article  Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Stewart DA, Strömberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 5:81–179

    Article  Google Scholar 

  • Raposo RS, Souza IG, Veloso ME, Kobayashi AK, Laviola BG, Diniz FM (2014) Development of novel simple sequence repeat markers from a genomic sequence survey database and their application for diversity assessment in Jatropha curcas germplasm from Guatemala. Genet Mol Res 13:106–6099

    Article  Google Scholar 

  • Sakurai N, Ara T, Ogata Y, Sano R, Ohno T, Sugiyama K, Hiruta A, Yamazaki K, Yano K, Aoki K, Aharoni A, Hamada K, Yokoyama K, Kawamura S, Otsuka H, Tokimatsu T, Kanehisa M, Suzuki H, Saito K, Shibata D (2011) KaPPA-View4: a metabolic pathway database for representation and analysis of correlation networks of gene co-expression and metabolite co-accumulation and omics data. Nucleic Acids Res 39(Database issue):D677–D684

    Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  CAS  PubMed  Google Scholar 

  • Schmitz PM, Kavallari A (2009) Crop plants versus energy plants-on the international food crisis. Bioorg Med Chem 17:4020–4021

    Article  CAS  PubMed  Google Scholar 

  • Silva-Junior O, Rosado T, Laviola B, Pappas M, Pappas G, Grattapaglia D (2011) Genome-wide SNP discovery from a pooled sample of accessions of the biofuel plant Jatropha curcas based on whole-transcriptome Illumina resequencing. BMC Proc 5:P57

    Article  PubMed Central  Google Scholar 

  • Shen J-L, Xiang-nan J, Hui-qun N, Pei-guang S, Shi-hui N, Xiao-yang C (2010) AFLP analysis of genetic diversity of Jatropha curcas grown in Hainan, China. Trees 24:455–462

    Article  Google Scholar 

  • Sood A, Jaiswal V, Chanumolu SK, Malhotra N, Pal T, Chauhan RS (2014) Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Mol Biol Rep 41:7683–7695

    Article  CAS  PubMed  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32(Web Server issue):W309–W312

    Google Scholar 

  • Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:610–1599

    Article  Google Scholar 

  • Sudheer-Pamidimarri DV, Singh S, Mastan SG, Patel J, Reddy MP (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Sun QB, Li LF, Li Y, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871

    Article  CAS  Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:22–411

    Article  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 15:1596–1604

    Article  Google Scholar 

  • Vásquez A, López C (2014) In silico genome comparison and distribution analysis of simple sequences repeats in cassava. Int J Genom 2014:471461

    Google Scholar 

  • Vishwakarma NP, Jadeja VJ (2013) Identification of miRNA encoded by Jatropha curcas from EST and GSS. Plant Signal Behav 8:e23152

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CM, Liu P, Yi C, Gu K, Sun F, Li L, Lo LC, Liu X, Feng F, Lin G, Cao S, Hong Y, Yin Z, Yue GH (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6:e23632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CM, Liu P, Sun F, Li L, Liu P, Ye J, Yue GH (2012) Isolation and identification of miRNAs in Jatropha curcas. Int J Biol Sci 8:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P et al (2014) Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 5:5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JR, Roberts M, Yorke JA, Pop M (2008) Figaro: a novel statistical method for vector sequence removal. Bioinformatics 24:7–462

    Article  Google Scholar 

  • Wu P, Zhou C, Cheng S, Wu Z, Lu W, Han J, Chen Y, Chen Y, Ni P, Wang Y, Xu X, Huang Y, Song C, Wang Z, Shi N, Zhang X, Fang X, Yang Q, Jiang H, Chen Y, Li M, Wang Y, Chen F, Wang J, Wu G (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J. 81:810–821

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Xu X, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G (2013) Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.). Gene 524:32–124

    Article  Google Scholar 

  • Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV et al (2011) EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genet Genom 7:207–219

    Article  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shusei Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirakawa, H., Sato, S. (2017). Genome Analysis. In: Tsuchimoto, S. (eds) The Jatropha Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-49653-5_1

Download citation

Publish with us

Policies and ethics