Skip to main content

Linkage Mapping and QTL Analysis

  • Chapter
  • First Online:
The Jatropha Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Jatropha curcas L. is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. Marker-assisted selection (MAS) has the huge potential to accelerate genetic improvement. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs) onto 11 linkage groups. However, genetic analysis of the yield traits has not been done in jatropha. Quantitative trait loci (QTL) mapping was conducted to identify genetic factors controlling growth and seed yield in jatropha. We identified a total of 28 QTLs for 11 growth and seed traits using a population of 296 backcrossing jatropha trees. QTL and expression QTL analyses were applied to identify genetic factors that are relevant to seed oil traits in jatropha. We screened key genes in auxin pathway including ARF and IAA families and downstream effectors to identify candidate genes controlling seed size in jatropha. JcARF19 was mapped in the major QTL region and significantly associated with seed length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida J, Achten WMJ, Duarte MP, Mendes B, Muys B (2011) Benchmarking the environmental performance of the Jatropha biodieselsystem through a generic life cycle assessment. Environ Sci Technol 45:5447–5453

    Google Scholar 

  • Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44:8684–8691

    Google Scholar 

  • Berleth T, Krogan NT, Scarpella E (2004) Auxin signals—turning genes on and turning cells around. Curr Opin Plant Biol 7(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Brown JR (2007) Comparative genomics: basic and applied research. CRC Press, Boca Raton

    Google Scholar 

  • Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174(6):613–617. doi:10.1016/j.plantsci.2008.03.010

    Article  CAS  Google Scholar 

  • Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9(2):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genom 11(1):462

    Article  Google Scholar 

  • Durbak A, Yao H, McSteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15(1):92–96

    Article  CAS  PubMed  Google Scholar 

  • Fairless D (2007) Biofuel: the little shrub that could–maybe. Nature 449(7163):652–655

    Article  PubMed  Google Scholar 

  • Goldstein DB, Schlotterer C (eds) (1999) Microsatellites: evolution and applications

    Google Scholar 

  • Gu K, Chiam H, Tian D, Yin Z (2011) Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 180(4):642–649

    Article  CAS  PubMed  Google Scholar 

  • Gu K, Yi C, Tian D, Sangha JS, Hong Y, Yin Z (2012) Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas. Biotechnol Biofuels 5(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães EP (2007) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization, Rome (incomplete)

    Google Scholar 

  • Harper JL, Lovell P, Moore K (1970) The shapes and sizes of seeds. Annu Rev Ecol Syst 1:327–356

    Article  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148(1):479–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M, Hayashi M, Pedrosa A, Onda R, Imaizumi-Anraku H (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8(6):301–310

    Article  CAS  PubMed  Google Scholar 

  • Heller J (1996) Physic nut. Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops, 1. IBPGR, Roma (in full)

    Google Scholar 

  • Hwang T-Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H, Hisano H, Sasamoto S, Sato S, Tabata S (2009) High-density integrated linkage map based on SSR markers in soybean. DNA Res:dsp010

    Google Scholar 

  • Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322(5906):1380–1384

    Article  Google Scholar 

  • Jain S, Sharma MP (2010) Biodiesel production from Jatropha curcas oil. Renew Sustain Energy Rev 14(9):3140–3147. doi:10.1016/j.rser.2010.07.047

    Article  CAS  Google Scholar 

  • Kumar S, Singh J, Nanoti SM, Garg MO (2012) A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresource Technol 110:723–729

    Google Scholar 

  • Lee DJ, Park JW, Lee HW, Kim J (2009) Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J Exp Bot 60(13):3935–3957

    Google Scholar 

  • Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16(6):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Wang CM, Li L, Sun F, Liu P, Yue GH (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 11:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meksem K, Kahl G (eds) (2006) The handbook of plant genome mapping: genetic and physical mapping. Wiley, Oxford

    Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell Online 19(1):118–130

    Article  CAS  Google Scholar 

  • Okushima Y, Mitina I, Quach HL, Theologis A (2005a) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43(1):29–46

    Article  CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D (2005b) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell Online 17(2):444–463

    Article  CAS  Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19(1):1–15

    Article  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9(1):113

    Article  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5(2):94–100

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, Kang H (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4(6):e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan Y-L, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17(11):656–665

    Article  CAS  PubMed  Google Scholar 

  • Sanderson K (2009) Wonder weed plans fail to flourish. Nature 461:328–329

    Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18(1):65–76

    Google Scholar 

  • Shah S, Sharma A, Gupta MN (2005) Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresour Technol 96(1):121–123. doi:10.1016/j.biortech.2004.02.026

    Article  CAS  PubMed  Google Scholar 

  • Sladek R, Hudson TJ (2006) Elucidating cis-and trans-regulatory variation using genetical genomics. Trends Genet 22(5):245–250

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Liu P, Ye J, Lo LC, Cao S, Li L, Yue GH, Wang CM (2012) An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 5:1–10

    Article  CAS  Google Scholar 

  • Thumma BR, Naidu BP, Chandra A, Cameron DF, Bahnisch LM, Liu C (2001) Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot 52(355):203–214

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement, vol 1. Springer, Berlin

    Book  Google Scholar 

  • Wang CM, Bai ZY, He XP, Lin G, Xia JH, Sun F, Lo LC, Feng F, Zhu ZY, Yue GH (2011a) A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genom 12(1):174

    Article  CAS  Google Scholar 

  • Wang CM, Liu P, Yi C, Gu K, Sun F, Li L, Lo LC, Liu X, Feng F, Lin G (2011b) A first generation microsatellite-and SNP-based linkage map of Jatropha. PLoS One 6(8):e23632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WY, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6(2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu Y, Tang L, Zhang F, Chen F (2011) A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences. Afr J Agr Res 6:275–284

    Google Scholar 

  • Xia JH, Liu F, Zhu ZY, Fu J, Feng J, Li J, Yue GH (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genom 11(1):135

    Article  Google Scholar 

  • Xue L-J, Zhang J-J, Xue H-W (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37(3):916–930

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, Lee WS (2006) Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34(6):1892–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7:964–976

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Hong Y, Qu J, Wang C (2012) Improvement of Jatropha oil bygenetic transformation. Springer Science Publishers, New York

    Google Scholar 

  • Ye J, Liu P, Zhu CS, Qu J, Wang XH, Sun YW, Sun F, Jiang YL, Yue GH, Wang CM (2014) Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genom 14(4):66–757

    Article  Google Scholar 

  • Yin Z, Meng F, Song H, Wang X, Xu X, Yu D (2010) Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. Plant Physiol 152(3):1625–1637

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Jiang L, Xu Y, Wang Y, Lu D, Chen F (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39(10):787–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work is part of the project “Genetic Improvement of Jatropha” initiated and coordinated by Professor Nam-Hai Chua, Rockefeller University, USA. We thank Weijie Tang, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China, for his editing work on this chapter. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunming Wang or Genhua Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ye, J., Wang, C., Yue, G. (2017). Linkage Mapping and QTL Analysis. In: Tsuchimoto, S. (eds) The Jatropha Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-49653-5_2

Download citation

Publish with us

Policies and ethics