Skip to main content

Swept Source OCT Angiography in Different Diseases

  • Chapter
  • First Online:
Atlas of Swept Source Optical Coherence Tomography

Abstract

Swept source optical coherence tomography angiography (SS-OCTA) devices are the latest OCT technology to become commercially available. These units feature scan rates of 100,000 A-scans per second. In this chapter, the use of an ultra-high speed SS-OCTA prototype device developed at Massachusetts Institute of Technology (Cambridge, MA, USA) and deployed to New England Eye Center, Boston, MA will be discussed. The prototype SS-OCT system has been described previously, so only key attributes are considered for the purposes of this chapter [1]. This device utilizes a vertical-cavity surface-emitting laser (VCSEL) with a light source operating at a 1050 nm wavelength and a scan rate of 400,000 A-scans per second. Images are obtained by acquiring five repeated B-scans from 500 sequentially uniformly spaced locations on the retina, with each B-scan consisting of 500 A-scans. Thus a total of 5 × 500 × 500 A-scans are acquired per SS-OCTA volume with a total acquisition time of approximately 3.8 s. The imaging range is approximately 2.1 mm in tissue, and the axial and transverse resolutions in tissue are approximately 8–9 μm and approximately 15 μm, respectively. A post-processing registration step merges the orthogonally scanned “X-fast” and “Y-fast” volumes to patient motion artifacts [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novais EA, Adhi M, Moult EM, Louzada RN, Cole ED, Husvogt L, et al. Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography. Am J Ophthalmol. 2016;164:80–8.

    Article  PubMed  Google Scholar 

  2. Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ, et al. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express. 2012;3:1182–99.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kraus MF, Liu JJ, Schottenhamml J, Chen CL, Budai A, Branchini L, et al. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed Opt Express. 2014;5:2591–613.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145:273–80.

    Article  PubMed  Google Scholar 

  5. Hayreh SS, Zimmerman MB. Fundus changes in branch retinal vein occlusion. Retina. 2015;35:1016–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hayreh SS. Classification of central retinal vein occlusion. Ophthalmology. 1983;90:458–74.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–55. doi:10.1016/j.preteyeres.2015.10.002. Epub 2015 Oct 23

    Article  PubMed  Google Scholar 

  8. Seddon JM, Francis PJ, George S, Schultz DW, Rosner B, Klein ML. Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA. 2007;297:1793–800.

    Article  CAS  PubMed  Google Scholar 

  9. Shah AR, Williams S, Baumal CR, Rosner B, Duker JS, Seddon JM. Predictors of response to intravitreal anti-vascular endothelial growth factor treatment of age-related macular degeneration. Am J Ophthalmol. 2016;163:154–66.e8.

    Article  CAS  PubMed  Google Scholar 

  10. Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med. 2012;33:295–317.

    Article  CAS  Google Scholar 

  11. Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis. 1999;5:35.

    CAS  PubMed  Google Scholar 

  12. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA. Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2009;50:4982–91.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McLeod DS, Taomoto M, Otsuji T, Green WR, Sunness JS, Lutty GA. Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2002;43:1986–93.

    PubMed  Google Scholar 

  14. Spaide RF, Campeas L, Haas A, Yannuzzi LA, Fisher YL, Guyer DR, et al. Central serous chorioretinopathy in younger and older adults. Ophthalmology. 1996;103:2070–9. discussion 9–80

    Article  CAS  PubMed  Google Scholar 

  15. Kitaya N, Nagaoka T, Hikichi T, Sugawara R, Fukui K, Ishiko S, et al. Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol. 2003;87:709–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10:1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Callanan DG, Lewis ML, Byrne SF, Gass JD. Choroidal neovascularization associated with choroidal nevi. Arch Ophthalmol. 1993;111:789–94.

    Article  CAS  PubMed  Google Scholar 

  18. Shields CL, Mashayekhi A, Materin MA, Luo CK, Marr BP, Demirci H, et al. Optical coherence tomography of choroidal nevus in 120 patients. Retina. 2005;25:243–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Eduardo Novais and Mark Lane for assistance with imaging; ByungKun Lee and Chen Lu and Jonathan Liu for developing the swept source technology; Benjamin Potsaid and Alex Cable from Thorlabs; Vijaysekhar Jayaraman from Praevium Research for developing VCSEL laser technology; and Stefan Ploner, Julia Schottenhamml, and Lennart Husvogt for developing the Pipeline and Vista software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay S. Duker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Louzada, R.N., Moult, E.M., Cole, E., Fujimoto, J.G., Duker, J.S. (2017). Swept Source OCT Angiography in Different Diseases. In: Michalewska, Z., Nawrocki, J. (eds) Atlas of Swept Source Optical Coherence Tomography . Springer, Cham. https://doi.org/10.1007/978-3-319-49840-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49840-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49839-3

  • Online ISBN: 978-3-319-49840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics