Skip to main content

Continuum Modeling of Biological Network Formation

  • Chapter
  • First Online:
Active Particles, Volume 1

Abstract

We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Albi, M. Artina, M. Fornasier and P. Markowich: Biological transportation networks: modeling and simulation. Analysis and Applications. Vol. 14, Issue 01 (2016).

    Google Scholar 

  2. H. Attouch, J. Bolte and B. F. Svaiter: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program., Ser. A (2013) 137:91–129.

    Google Scholar 

  3. J. Banavar, F. Colaiori, A. Flammini, A. Maritan and A. Rinaldo: Topology of the Fittest Transportation Network. Phys. Rev. Lett. 84, 20 (2000).

    Google Scholar 

  4. M. Barthélemy: Spatial networks. Physics Reports 499 (2011), pp. 1–101.

    Google Scholar 

  5. S. Bohn and M. Magnasco: Structure, Scaling, and Phase Transition in the Optimal Transport Network. Phys. Rev. Lett. 98, 088702 (2007).

    Google Scholar 

  6. M.A. Botchev: A short guide to exponential Krylov subspace time integration for Maxwell’s equations. September 2012, Memorandum 1992, Department of Applied Mathematics, University of Twente, Enschede. ISSN 1874-4850.

    Google Scholar 

  7. S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, 3rd Edition, Vol. 15 of Texts in Applied Mathematics, Springer, New York, 2008.

    Google Scholar 

  8. H. Brezis: New Questions Related to the Topological Degree. In: P. Etingof, V. Retakh and I.M. Singer (eds.), The Unity of Mathematics, Progress in Mathematics 244, Birkhäuser Boston (2006), pp. 137–154.

    Google Scholar 

  9. L. Caffarelli, and N. Riviere, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar. Arch. Rational Mech. Anal. 69 (1979), no. 1, pp. 3136.

    Google Scholar 

  10. P. Clément: Approximation by finite element functions using local regularization. Rev. Franaise Automat. Informat. Recherche Oprationnelle Sr. Rouge Anal. Numr., 9, R-2, 7784, 1975.

    Google Scholar 

  11. F. Corson: Fluctuations and redundancy in optimal transport networks. Phys. Rev. Lett. 104:048703 (2010).

    Google Scholar 

  12. N. Dengler and J. Kang: Vascular patterning and leaf shape. Current Opinion in Plant Biology 4 (2001), pp. 50–56.

    Google Scholar 

  13. G. Di Fazio: \(L^p\) estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital., (7) 10-A, pp. 409–420 (1996).

    Google Scholar 

  14. M. Durand: Architecture of optimal transport networks. Phys. Rev. E 73:016116 (2006).

    Google Scholar 

  15. J. Eckstein, D. P. Bertsekas: On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators. Math. Program., 55:293–318, 1992.

    Google Scholar 

  16. A. Eichmann, F. Le Noble, M. Autiero and P. Carmeliet: Guidance of vascular and neural network formation. Current Opinion in Neurobiology 15 (2005), pp. 108–115.?

    Google Scholar 

  17. M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1, http://cvxr.com/cvx, 2014.

  18. J.L. Gross and J. Yellen: Handbook of Graph Theory. CRC Press (2004).

    Google Scholar 

  19. D. Guidetti: On elliptic systems in \(L^1\). Osaka J. Math. 30 (1993), pp. 397–429.

    Google Scholar 

  20. J. Haskovec, P. Markowich and B. Perthame: Mathematical Analysis of a PDE System for Biological Network Formation. Comm. PDE 40:5, pp. 918–956, 2015.

    Google Scholar 

  21. J. Haskovec, S. Hittmeir, P. Markowich and A. Mielke: On energy-reaction-diffusion systems. Preprint, 2016.

    Google Scholar 

  22. J. Haskovec, P. Markowich, B. Perthame and M. Schlottbom: Notes on a PDE system for biological network formation. Nonlinear Analysis 138 (2016), pp. 127–155.

    Google Scholar 

  23. https://en.wikipedia.org/wiki/Intensive_and_extensive_properties.

  24. D. Hu: Optimization, Adaptation, and Initialization of Biological Transport Networks. Notes from lecture (2013).

    Google Scholar 

  25. D. Hu and D. Cai: Adaptation and Optimization of Biological Transport Networks. Phys. Rev. Lett. 111 (2013), 138701.

    Google Scholar 

  26. D. Hu, D. Cai and W. Rangan: Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution. PLoS ONE 7:e45444 (2012).

    Google Scholar 

  27. F. John and L. Nirenberg: On functions of bounded mean oscillation. Comm. Pure and appl. 14 (1961), pp. 415–426.

    Google Scholar 

  28. A. Kamiya, R. Bukhari and T. Togawa: Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of Mathematical Biology 46 (1984), pp. 127–137.

    Google Scholar 

  29. E. Katifori, G. Szollosi and M. Magnasco: Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104:048704 (2010).

    Google Scholar 

  30. M. Laguna, S. Bohn and E. Jagla: The Role of Elastic Stresses on Leaf Venation Morphogenesis. PLOS Comput. Biol. 4:e1000055 (2008).

    Google Scholar 

  31. R. Malinowksi: Understanding of Leaf Developmentthe Science of Complexity. Plants 2 (2013), pp. 396–415.

    Google Scholar 

  32. N. Meyers: An \(L^p\) -estimate for the gradient of solutions of second order elliptic divergence equations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze \(3^e\) série, tome 17, no. 3 (1963), pp. 189–206.

    Google Scholar 

  33. O. Michel and J. Biondi: Morphogenesis of neural networks. Neural Processing Letters, Vol. 2, No. 1 (1995), pp. 9–12.

    Google Scholar 

  34. C. Murray: The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA. 12, 207 (1926).

    Google Scholar 

  35. T. Nelson and N. Dengler: Leaf Vascular Pattern Formation. Plant Cell 9:1121 (1997).

    Google Scholar 

  36. E. Oudet and F. Santambrogio: A Modica-Mortola Approximation for Branched Transport and Applications. Archive for Rational Mechanics and Analysis. Vol. 201, Issue 1, pp. 115–142 (2011).

    Google Scholar 

  37. N. Parikh and S. Boyd: Proximal Algorithms. Foundations and Trends in Optimization. Vol. 1, No. 3 (2013) 123231.

    Google Scholar 

  38. U. Pohl, J. Holtz, R. Busse and E. Bassenge: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44 (1986).

    Google Scholar 

  39. M. Safdari: The free boundary of variational inequalities with gradient constraints. arXiv:1501.05337.

  40. M. Safdari: The regularity of some vector-valued variational inequalities with gradient constraints. arXiv:1501.05339.

  41. D. Sarason: Functions of vanishing mean oscillation. Trans. AMS 207 (1975), pp. 391–405.

    Google Scholar 

  42. D. Sedmera: Function and form in the developing cardiovascular system. Cardiovascular Research 91 (2011), pp. 252–259.

    Google Scholar 

  43. J. Simon: Compact sets in the space \(L^p(0,T; B)\). Ann. Mat. Pure Appl. IV (146), 1987, pp. 65–96.

    Google Scholar 

  44. A. Tero, S. Takagi, T. Saigusa, K. Ito, D. Bebber, M. Fricker, K. Yumiki, R. Kobayashi and T. Nakagaki: Rules for Biologically Inspired Adaptive Network Design. Science 22:327 (2010), pp. 439–442.

    Google Scholar 

  45. C. K. Weichert: Cardiovascular System. AccessScience. McGraw-Hill Education (2014).

    Google Scholar 

  46. S. Whitaker: Flow in porous media I: A theoretical derivation of Darcys law. Transport in porous media, 1 (1986), pp. 3–25.

    Google Scholar 

Download references

Acknowledgements

MB and MS acknowledge support by ERC via Grant EU FP 7 - ERC Consolidator Grant 615216 LifeInverse. MB acknowledges support by the German Science Foundation DFG via EXC 1003 Cells in Motion Cluster of Excellence, Münster, Germany. GA acknowledges the ERC-Starting Grant project High-Dimensional Sparse Optimal Control (HDSPCONTR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Haskovec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Albi, G., Burger, M., Haskovec, J., Markowich, P., Schlottbom, M. (2017). Continuum Modeling of Biological Network Formation. In: Bellomo, N., Degond, P., Tadmor, E. (eds) Active Particles, Volume 1 . Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-49996-3_1

Download citation

Publish with us

Policies and ethics