Skip to main content

Hybrid Human Motion Prediction for Action Selection Within Human-Robot Collaboration

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

Abstract

We present a Human-Robot-Collaboration (HRC) framework consisting of a hybrid human motion prediction approach together with a game theoretical action selection. In essence, the robot is required to predict the motions of the human co-worker, and to proactively decide on its actions. For our prediction framework, model-based human motion trajectories are learned by data-driven methods for efficient trajectory rollouts in which obstacles are also considered. We provide the reliability analysis of human trajectory predictions within a human-robot collaboration experimental setup. The HRC scenario is modeled as an iterative game to select the actions for the Human-Robot-Team (HRT) by finding the Nash Equilibrium of the game. Experimental evaluation shows how the proposed prediction approach can be successfully integrated into a game theory based action selection framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dinh, K.H., Oguz, O., Huber, G., Gabler, V., Wollherr, D.: An approach to integrate human motion prediction into local obstacle avoidance in close human-robot collaboration. In: International Workshop on Advanced Robotics and its Social Impacts (ARSO). IEEE, pp. 1–6 (2015)

    Google Scholar 

  2. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. Trans. Pattern Anal. Mach. Intell. 38(1), 14–29 (2016)

    Article  Google Scholar 

  3. Mainprice, J., Berenson, D.: Human-robot collaborative manipulation planning using early prediction of human motion. In: International Workshop on Intelligent Robots and Systems (IROS). IEEE, pp. 299–306 (2013)

    Google Scholar 

  4. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  5. Kawato, M.: Internal models for motor control and trajectory planning. Current Opin. Neurobiol. 9(6), 718–727 (1999)

    Article  Google Scholar 

  6. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)

    Article  Google Scholar 

  7. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maeda, G., Ewerton, M., Lioutikov, R., Amor, H.B., Peters, J., Neumann, G.: Learning interaction for collaborative tasks with probabilistic movement primitives. In: International Conference on Humanoid Robots. IEEE, pp. 527–534 (2014)

    Google Scholar 

  9. Hawkins, K.P., Bansal, S., Vo, N.N., Bobick, A.F.: Anticipating human actions for collaboration in the presence of task and sensor uncertainty. In: International Conference on Robotics and Automation (ICRA). IEEE, pp. 2215–2222 (2014)

    Google Scholar 

  10. Nikolaidis, S., Lasota, P., Ramakrishnan, R., Shah, J.: Improved human-robot team performance through cross-training, an approach inspired by human team training practices. Int. J. Robot. Res. 34(14), 1711–1730 (2015)

    Article  Google Scholar 

  11. Gabler, V., Stahl, T., Huber, G., Oguz, O., Wollherr, D.: A game-theoretic approach for adaptive action selection in close distance human-robot-collaboration. In: International Conference on Robotics and Automation (ICRA). IEEE (submitted, 2016)

    Google Scholar 

  12. Li, Y., Tee, K.P., Chan, W.L., Yan, R., Chua, Y., Limbu, D.K.: Role adaptation of human and robot in collaborative tasks. In: International Conference on Robotics and Automation (ICRA). IEEE, pp. 5602–5607 (2015)

    Google Scholar 

  13. Jarrassé, N., Charalambous, T., Burdet, E.: A framework to describe, analyze and generate interactive motor behaviors. PloS One 7(11), e49945 (2012)

    Article  Google Scholar 

  14. Turnwald, A., Althoff, D., Wollherr, D., Buss, M.: Understanding human avoidance behavior: interaction-aware decision making based on game theory. Int. J. Soc. Robot. 8(2), 331–351 (2016)

    Article  Google Scholar 

  15. Yazdani, M., Gamble, G., Henderson, G., Hecht-Nielsen, R.: A simple control policy for achieving minimum jerk trajectories. Neural Netw. 27, 74–80 (2012)

    Article  Google Scholar 

  16. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx

  17. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. LNCIS, vol. 371, pp. 95–110. Springer, Heidelberg (2008). http://stanford.edu/~boyd/graph_dcp.html

  18. Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.: Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance. In: International Conference on Robotics and Automation (ICRA). IEEE, pp. 2587–2592 (2009)

    Google Scholar 

  19. Leyton-Brown, K., Shoham, Y.: Essentials of game theory: a concise multidisciplinary introduction. Synth. Lect. Artif. Intell. Mach. Learn. 2(1), 1–88 (2008)

    Article  MATH  Google Scholar 

  20. Kruskall, J., Liberman, M.: The symmetric time warping algorithm: From continuous to discrete. In: Time Warps, String Edits and Macromolecules (1983)

    Google Scholar 

  21. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur S. Oguz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oguz, O.S., Gabler, V., Huber, G., Zhou, Z., Wollherr, D. (2017). Hybrid Human Motion Prediction for Action Selection Within Human-Robot Collaboration. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics