Skip to main content

Part of the book series: Biosemiotics ((BSEM,volume 16))

  • 920 Accesses

Abstract

Mimicry has historically been used as one of the main arguments for supporting Darwin’s theory of evolution. This was the original emphasis of Henry W. Bates when he wrote: “I believe the case offers a most beautiful proof of the truth of the theory of natural selection” (Bates 1862: 513). The chronicler of evolutionary biology, Ernst Mayr , has written that Darwin’s “On the origin of species” was easily attackable as it was mostly based on deductive reasoning and included little proof except the analogy between artificial selection and natural selection. Bates’s discovery that allowed for demonstrating the mechanisms of natural selection in nature turned out to be a good argument against such criticism (Mayr 1982: 522–523). In later discussions, evolutionary adaptations, fitness landscapes and other conceptual tools of Neo-Darwinism have been used for interpreting mimicry: e.g. for determining the positions of the mimic and the model in mimicry systems (in Mertensian mimicry, Wickler 1968: 111–121), as criteria in mimicry typologies (Starrett 1993), or for theorising about specific mimicry cases. There have also been some alternative attempts to describe mimicry (e.g. Theodor Eimer’s (1897) orthogenesis , Franz Heikertinger ’s (1954) non-adaptationist view, Stanislav Komárek ’s (2003) historical interpretation), but these have been met with critical objections or have been marginalised in academic debate. In this chapter, I will discuss the connection between mimicry and semiotic evolution, whereas the general focus of this book still lies in the structural aspects of mimicry and horizontal communicative processes therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A related concept is developmental scaffolding (cf. Giorgi and Bruni 2015), but I prefer here ontogenetic scaffolding as the former concept has quite diverse meanings in developmental biology, education and developmental psychology.

  2. 2.

    Dalziell and Welbergen (2016) have recently pointed out that learning can fundamentally influence the evolutionary dynamics of the mimicry system. They note that besides receivers, learning by mimics and even by models (to find ways of reducing the mimic’s interference) also has an effect on the mimicry.

References

  • Akino, T., Knapp, J. J., Thomas, J. A., & Elmes, G. W. (1999). Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proceedings of the Royal Society of London – Biological Sciences, 266(1427), 1419–1426.

    Article  CAS  Google Scholar 

  • Axén, A. H. (2000). Variation in behavior of lycaenid larvae when attended by different ant species. Evolutionary Ecology, 14(7), 611–625.

    Article  Google Scholar 

  • Ayasse, M., Gögler, J., & Stökl, J. (2010). Pollinator-driven speciation in sexually deceptive orchids of the genus Ophrys. In M. Glaubrecht (Ed.), Evolution in action—Adaptive radiations and the origins of biodiversity (pp. 101–118). Berlin: Springer.

    Google Scholar 

  • Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441–451.

    Article  Google Scholar 

  • Bates, H. W. (1862). Contributions to an insect fauna of the Amazon valley. Lepidoptera: Heliconidæ. Transactions of the Linnean Society. Zoology, 23, 495–566.

    Article  Google Scholar 

  • Berry, R. J. (1990). Industrial melanism and peppered moths (Biston betularia (L.)). Biological Journal of the Linnean Society, 39(4), 301–322.

    Article  Google Scholar 

  • Brakefield, P. M., & French, V. (1999). Butterfly wings: the evolution of development of colour patterns. Bioessays, 21, 391–401.

    Article  Google Scholar 

  • Caldwell, G. S., & Rubinoff, R. W. (1983). Avoidance of venomous sea snakes by naive herons and egrets. The Auk, 100(1), 195–198.

    Google Scholar 

  • Darwin, C. R. (1872a). The expression of the emotions in man and animals. London: John Murray.

    Book  Google Scholar 

  • Darwin, C. R. (1872b). The origin of species by means of natural selection (6th ed.). London: John Murray.

    Google Scholar 

  • Davies, N. B., & Welbergen, J. A. (2008). Cuckoo-hawk mimicry? An experimental test. Proceedings of the Royal Society B: Biological Sciences, 275(1644), 1817–1822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eens, M., Pinxten, R., & Verheyen, R. F. (1991). Male song as a cue for mate choice in the European starling. Behaviour, 116(3–4), 210–238.

    Article  Google Scholar 

  • Eimer, G. M. T. (1897). Die Entstehung der Arten auf Grund von vererben erworbener Eigenschaften nach den Gesetzen organischen Wachsens. II. Orthogenesis der Schmetterlinge. Leipzig: Engelmann.

    Google Scholar 

  • Fiedler, K. (2006). Ant-associates of Palaearctic lycaenid butterfly larvae (Hymenoptera: Formicidae, Lepidoptera: Lycaenidae)—A review. Myrmecologische Nachrichten, 9, 77–87.

    Google Scholar 

  • French, V. (1997). Pattern formation in colour on butterfly wings. Current Opinion in Genetics and Development, 7(4), 524–529.

    Article  CAS  PubMed  Google Scholar 

  • Gentner, T. Q., & Hulse, S. H. (2000). Female European starling preference and choice for variation in conspecific male song. Animal Behaviour, 59(2), 443–458.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation—A missing term in the science of form. Paleobiology, 8(1), 4–15.

    Article  Google Scholar 

  • Guilford, T. (1992). Predator psychology and the evolution of prey coloration. In M. J. Crawley (Ed.), Natural enemies: The population biology of predators, parasites, and diseases (pp. 377–394). Oxford: Blackwell Scientific.

    Google Scholar 

  • Guilford, T., & Dawkins, M. S. (1991). Receiver psychology and design of animal signals. Trends in Neurosciences, 16(11), 430–436.

    Article  Google Scholar 

  • Heikertinger, F. (1954). Das Rätsel der Mimikry und seine Lösung. Eine kritische Darstellung des Werdens, des Wesens und der Widerlegung der Tiertrachthypothesen. Jena: Veb Gustav Fisher Verlag.

    Google Scholar 

  • Hoffmeyer, J. (1998). The unfolding semiosphere. In G. Van De Vijver, S. N. Salthe, & M. Delpos (Eds.), Evolutionary systems. Biological and epistemological perspectives on selection and self-organization (pp. 281–293). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Hoffmeyer, J. (2007). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics. The new biological synthesis (pp. 149–166). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2010). Semiotic freedom: An emerging force. In P. Davies & N. H. Gregersen (Eds.), Information and the nature of reality. From physics to metaphysics (pp. 185–204). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2014a). The semiome: From genetic to semiotic scaffolding. Semiotica, 198, 11–31.

    Google Scholar 

  • Hoffmeyer, J. (2014b). Semiotic scaffolding: A biosemiotic link between sema and soma. In K. R. Cabell & J. Valsiner (Eds.), The catalyzing mind: Beyond models of causality, Annals of theoretical psychology 11 (pp. 95–110). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hombría, J. C.-G. (2011). Butterfly eyespot serial homology: Enter the Hox genes. BMC Biology, 2011(9), 26.

    Article  Google Scholar 

  • Howse, P. E. (2013). Lepidopteran wing patterns and the evolution of satyric mimicry. Biological Journal of the Linnean Society, 109(1), 203–214.

    Article  Google Scholar 

  • Howse, P. E., & Allen, J. A. (1994). Satyric mimicry—The evolution of apparent imperfection. Proceedings of the Royal Society, B, 257(1349), 111–114.

    Article  Google Scholar 

  • Ivey, A. E., & Hurst, J. C. (1971). Communication as adaptation. The Journal of Communication, 21(3), 199–207.

    Article  Google Scholar 

  • Jiggins, C. D. (2008). Ecological speciation in mimetic butterflies. Bioscience, 58(6), 541–548.

    Article  Google Scholar 

  • Jordano, D., & Thomas, C. D. (1992). Specificity of an ant-lycaenid interaction. Oecologia, 91(3), 431–438.

    Article  Google Scholar 

  • Kampis, G. (1998). Evolution as its own cause and effect. In G. Van De Vijver, S. N. Salthe, & M. Delpos (Eds.), Evolutionary systems. Biological and epistemological perspectives on selection and self-organization (pp. 255–266). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Kikuchi, D. W., & Pfennig, D. W. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88(4), 297–315.

    Article  PubMed  Google Scholar 

  • Kleisner, K. (2010). Re-semblance and re-evolution: Paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Systems Studies, 38(1/4), 378–392.

    Article  Google Scholar 

  • Kleisner, K. (2011). Perceive, co-opt, modify, and live! Organism as a centre of experience. Biosemiotics, 4, 223–241.

    Article  Google Scholar 

  • Kleisner, K., & Maran, T. (2014). Visual communication in animals: Applying Portmannian and Uexküllian biosemiotic approach. In D. Machin (Ed.), Visual communication (Handbooks of communication science 4) (pp. 559–676). Berlin: De Gruyter Mouton.

    Google Scholar 

  • Komárek, S. (2003). Mimicry, aposematism and related phenomena. Mimetism in nature and the history of its study. München: Lincom Europa.

    Google Scholar 

  • Kull, K. (1998). Semiotic ecology: Different natures in the semiosphere. Sign Systems Studies, 26, 344–371.

    Google Scholar 

  • Lindholm, M. (2015). DNA dispose, but subjects decide. Learning and the extended synthesis. Biosemiotics, 8(3), 443–461.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mallet, J., & Gilbert Jr., L. E. (1995). Why are there so many mimicry rings? Correlations between habitat, behaviour and mimicry in Heliconius butterflies. Biological Journal of the Linnean Society, 55, 159–180.

    Google Scholar 

  • Mallet, J., McMillan, W. O., & Jiggins, C. D. (1998). Mimicry and warning color at the boundary between races and species. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 390–403). Oxford: Oxford University Press.

    Google Scholar 

  • Maran, T. (2005). Mimikri kui kommunikatsioonisemiootiline fenomen [Mimicry as a communication semiotic phenomenon] (Dissertationes Semioticae Universitatis Tartuensis 7). Tartu: Tartu University Press.

    Google Scholar 

  • Maran, T. (2011). Becoming a sign: The mimic’s activity in biological mimicry. Biosemiotics, 4(2), 243–257.

    Article  Google Scholar 

  • Maran, T. (2014b). Semiotization of matter. A hybrid zone between biosemiotics and material ecocriticism. In S. Iovino & S. Oppermann (Eds.), Material Ecocriticism (pp. 141–154). Bloomington: Indiana University Press.

    Google Scholar 

  • Maran, T., & Kleisner, K. (2010). Towards an evolutionary biosemiotics: Semiotic selection and semiotic co-option. Biosemiotics, 3(2), 189–200.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Cambridge: The Belknap Press of Harvard University.

    Google Scholar 

  • Monteiro, A. (2014). Origin, development, and evolution of butterfly eyespots. Annual Review of Entomology, 60, 253–271.

    Article  PubMed  Google Scholar 

  • Monteiro, A., Chen, B., Ramos, D. M., Oliver, J. C., Tong, X., Guo, M., Wang, W. K., Fazzino, L., & Kamal, F. (2013). Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 320(5), 321–331.

    Google Scholar 

  • Mountjoy, D. J., & Lemon, R. E. (1996). Female choice for complex song in the European starling: A field experiment. Behavioral Ecology and Sociobiology, 38(1), 65–71.

    Article  Google Scholar 

  • Nijhout, H. F. (1986). Pattern and pattern diversity on Lepidopteran wings. Bioscience, 36(8), 527–533.

    Article  Google Scholar 

  • Nijhout, H. F. (1994). Developmental perspectives on evolution of butterfly mimicry. Bioscience, 44(3), 148–157.

    Article  Google Scholar 

  • Nijhout, H. F., Maini, P. K., Madzvamuse, A., Wathen, A. J., & Sekimura, T. (2003). Pigmentation pattern formation in butterflies: Experiments and models. Comptes Rendus Biologies, 326(8), 717–727.

    Article  PubMed  Google Scholar 

  • Oliver, J. C., Beaulieu, J. M., Gall, L. F., Piel, W. H., & Monteiro, A. (2014). Nymphalid eyespot serial homologues originate as a few individualized modules. Proceedings of the Royal Society B: Biological Sciences, 281(1787), 1471–2954.

    Article  Google Scholar 

  • Otaki, J. M. (2008). Phenotypic plasticity of wing color patterns revealed by temperature and chemical applications in a nymphalid butterfly Vanessa indica. Journal of Thermal Biology, 33(2), 128–139.

    Article  CAS  Google Scholar 

  • Parker, H. G., VonHoldt, B. M., Quignon, P., Margulies, E. H., Shao, S., et al. (2009). An expressed Fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science, 325(5943), 995–998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Payne, R. (1977). The ecology of brood parasitism in birds. Annual Review of Ecology and Systematics, 8, 1–28.

    Article  Google Scholar 

  • Payne, R. B., Payne, L. L., Woods, J. L., & Sorenson, M. D. (2000). Imprinting and the origin of parasite–host species associations in brood-parasitic indigobirds, Vidua chalybeate. Animal Behaviour, 59(1), 69–81.

    Article  CAS  PubMed  Google Scholar 

  • Pernetta, J. C. (1977). Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Canadian Journal of Zoology, 55(10), 1612–1619.

    Article  Google Scholar 

  • Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., & Travassos, M. A. (2002). The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology, 47, 733–771.

    Article  CAS  PubMed  Google Scholar 

  • Randall, J. E. (2005). A review of mimicry in marine fishes. Zoological Studies, 44(3), 299–328.

    Google Scholar 

  • Rothschild, M. (1984). Aide mémoire mimicry. Ecological Entomology, 9(3), 311–319.

    Article  Google Scholar 

  • Schlick-Steiner, B. C., Steiner, F. M., Höttinger, H., Nikiforov, A., Mistrik, R., Schafellner, C., Baier P., & Christian E. (2004). A butterfly’s chemical key to various ant forts: Intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften, 91(5), 209–214.

    Google Scholar 

  • Sorenson, M. D., Sefc, K. M., & Payne, R. B. (2003). Speciation by host switch in brood parasitic indigobirds. Nature, 424, 928–931.

    Article  CAS  PubMed  Google Scholar 

  • Starrett, A. (1993). Adaptive resemblance: A unifying concept for mimicry and crypsis. Biological Journal of the Linnean Society, 48(4), 229–317.

    Article  Google Scholar 

  • Stevens, M., & Ruxton, G. D. (2014). Do animal eyespots really mimic eyes? Current Zoology, 60(1), 26–36.

    Article  Google Scholar 

  • Stevens, M., Cantor, A., Graham, J., & Winney, I. S. (2009). The function of animal ‘eyespots’: Conspicuousness but not eye mimicry is key. Current Zoology, 55(5), 319–326.

    Google Scholar 

  • Thorogood, R., & Davies, N. B. (2013). Hawk mimicry and the evolution of polymorphic cuckoos. Chinese Birds, 4(1), 39–50.

    Article  Google Scholar 

  • Twomey, E., Vestergaard, J. S., & Summers, K. (2014). Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator. Nature Communications, 5, 4749. doi:10.1038/ncomms5749.

    Article  CAS  PubMed  Google Scholar 

  • von Uexküll, J. (1982). The theory of meaning. Semiotica, 42(1), 25–82.

    Google Scholar 

  • Weible, D. (2013). Approaching a semiotics of exaptation: At the intersection between biological evolution and technological development. Sign Systems Studies, 41(4), 504–527.

    Article  Google Scholar 

  • Welbergen, J. A., & Davies, N. B. (2011). A parasite in wolf’s clothing: hawk mimicry reduces mobbing of cuckoos by hosts. Behavioral Ecology, 22(3), 574–579.

    Article  Google Scholar 

  • Wickler, W. (1968). Mimicry in plants and animals (R. D. Martin, Trans.). London: George Weidenfeld and Nicolson.

    Google Scholar 

  • Wiens, D. (1978). Mimicry in plants. Evolutionary Biology, 11, 364–403.

    Google Scholar 

  • Williams, L. E., Huang, J. Y., & Bargh, J. A. (2009). The scaffolded mind: Higher mental processes are grounded in early experience of the physical world. European Journal of Social Psychology, 39(7), 1257–1267.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Maran, T. (2017). Mimicry and Semiotic Evolution. In: Mimicry and Meaning: Structure and Semiotics of Biological Mimicry. Biosemiotics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-50317-2_9

Download citation

Publish with us

Policies and ethics