Skip to main content

Biocalcite and Carbonic Acid Activators

  • Chapter
  • First Online:
Blue Biotechnology

Abstract

Based on evolution of biomineralizing systems and energetic considerations, there is now compelling evidence that enzymes play a driving role in the formation of the inorganic skeletons from the simplest animals, the sponges, up to humans. Focusing on skeletons based on calcium minerals, the principle enzymes involved are the carbonic anhydrase (formation of the calcium carbonate-based skeletons of many invertebrates like the calcareous sponges, as well as deposition of the calcium carbonate bioseeds during human bone formation) and the alkaline phosphatase (providing the phosphate for bone calcium phosphate-hydroxyapatite formation). These two enzymes, both being involved in human bone formation, open novel not yet exploited targets for pharmacological intervention of human bone diseases like osteoporosis, using compounds that act as activators of these enzymes. This chapter focuses on carbonic anhydrases of biomedical interest and the search for potential activators of these enzymes, was well as the interplay between carbonic anhydrase-mediated calcium carbonate bioseed synthesis and metabolism of energy-rich inorganic polyphosphates. Beyond that, the combination of the two metabolic products, calcium carbonate and calcium-polyphosphate, if applied in an amorphous form, turned out to provide the basis for a new generation of scaffold materials for bone tissue engineering and repair that are, for the first time, morphogenetically active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdo MR, Vullo D, Saada MC, Montero JL, Scozzafava A, Winum JY, Supuran CT (2009) Carbonic anhydrase activators: activation of human isozymes I, II and IX with phenylsulfonylhydrazido l-histidine derivatives. Bioorg Med Chem Lett 19:2440–2443

    Article  CAS  PubMed  Google Scholar 

  • Abdülkadir Coban T, Beydemir S, Gülcin I, Ekinci D, Innocenti A, Vullo D, Supuran CT (2009) Sildenafil is a strong activator of mammalian carbonic anhydrase isoforms I–XIV. Bioorg Med Chem 17:5791–5795

    Article  PubMed  CAS  Google Scholar 

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970

    Article  CAS  Google Scholar 

  • Aggarwal M, Boone CD, Kondeti B, McKenna R (2013) Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 28:267–277

    Article  PubMed  Google Scholar 

  • Aizenberg J, Hanson J, Koetzle TF, Leiserowitz L, Weiner S, Addadi L (1995) Biologically induced reduction in symmetry: a study of crystal texture of calcitic sponge spicules. Chem Eur J 1:414–422

    Article  CAS  Google Scholar 

  • Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G (2009) X-Ray crystallography of CA inhibitors and its importance in drug design. In: Supuran CT, Winum JY (eds) Drug Design of Zinc-Enzyme Inhibitors: functional Structural and Disease Applications. Wiley, Hoboken, pp 73–138

    Google Scholar 

  • Alvarez L, Fanjul M, Carter N, Hollande E (2001) Carbonic anhydrase II associated with plasma membrane in a human pancreatic duct cell line (CAPAN-1). J Histochem Cytochem 49:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • An Z (2009) Bis(µ-2’-carboxylatobiphenyl-2-carboxylic acid-κ2O2:O2’)bis[(2,2’-bipyridine- κ2 N, N’)(2’-carboxylatobiphenyl-2-carboxylic acid- κO2’)zinc(II)]. Acta Crystallogr Sect E - Struct Rep E65:m1501

    Article  CAS  Google Scholar 

  • Andrade LR, Lins U, Farina M, Kachar B, Thalmann R (2012) Immunogold TEM of otoconin 90 and otolin—relevance to mineralization of otoconia, and pathogenesis of benign positional vertigo. Hear Res 292:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnett TR (2008) Extracellular pH regulates bone cell function. J Nutr 138:415S–418S

    CAS  PubMed  Google Scholar 

  • Aspatwar A, Tolvanen MEE, Ortutay C, Parkkila S (2014) Carbonic anhydrase related proteins: molecular biology and evolution. Subcell Biochem 75:135–156

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol/Plant Molec Biol 45:369–392

    Article  CAS  Google Scholar 

  • Barrese AA 3rd, Genis C, Fisher SZ, Orwenyo JN, Kumara MT, Dutta SK, Phillips E, Kiddle JJ, Tu C, Silverman DN, Govindasamy L, Agbandje-McKenna M, McKenna R, Tripp BC (2008) Inhibition of carbonic anhydrase II by thioxolone: a mechanistic and structural study. Biochemistry 47:3174–3184

    Article  CAS  PubMed  Google Scholar 

  • Beniash E (2011) Biominerals—hierarchical nanocomposites: the example of bone. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:47–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertucci A, Zoccola D, Tambutté S, Vullo D, Supuran CT (2010) Carbonic anhydrase activators. The first activation study of a coral secretory isoform with amino acids and amines. Bioorg Med Chem 18:2300–2303

    Article  CAS  PubMed  Google Scholar 

  • Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop 129:279–292

    Article  CAS  Google Scholar 

  • Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109:14170–14175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  • Breton S (2001) The cellular physiology of carbonic anhydrases. J Pancreas 2(Suppl):159–164

    CAS  Google Scholar 

  • Briganti F, Mangani S, Orioli P, Scozzafava A, Vernaglione G, Supuran CT (1997) Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry 36:10384–10392

    Article  CAS  PubMed  Google Scholar 

  • Cartwright JH, Checa AG, Gale JD, Gebauer D, Sainz-Díaz CI (2012) Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? Angew Chem Int Ed Engl 51:11960–11970

    Article  CAS  PubMed  Google Scholar 

  • Casey JR, Sly WS, Shah GN, Alvarez BV (2009) Bicarbonate homeostasis in excitable tissues: role of AE3 Cl-/HCO3- exchanger and carbonic anhydrase XIV interaction. Am J Physiol Cell Physiol 297C:1091–1102

    Article  CAS  Google Scholar 

  • Chang X, Zheng Y, Yang Q, Wang L, Pan J, Xia Y, Yan X, Han J (2012) Carbonic anhydrase I (CA1) is involved in the process of bone formation and is susceptible to ankylosing spondylitis. Arthritis Res Ther 14:R176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiche J, Ilc K, Laferrier J, Trottier E, Dayan F, Mazure N, Brahimi-Horn MC, Pouysségur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–363

    Article  CAS  PubMed  Google Scholar 

  • Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037

    CAS  PubMed  Google Scholar 

  • Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  CAS  Google Scholar 

  • Collin P, Nefussi JR, Wetterwald A, Nicolas V, Boy-Lefevre ML, Fleisch H, Forest N (1992) Expression of collagen, osteocalcin, and bone alkaline phosphatase in a mineralizing rat osteoblastic cell culture. Calcif Tissue Int 50:175–183

    Article  CAS  PubMed  Google Scholar 

  • Cooper EL, Hirabayashi K, Strychar KB, Sammarco PW (2014) Corals and their potential applications to integrative medicine. Based Complement Alternat Med 2014:184959

    Google Scholar 

  • Dave K, Ilies MA, Scozzafava A, Temperini C, Vullo D, Supuran CT (2011) An inhibitor-like binding mode of a carbonic anhydrase activator within the active site of isoform II. Bioorg Med Chem Lett 21:2764–8276

    Article  CAS  PubMed  Google Scholar 

  • Deans MR, Peterson JM, Wong GW (2010) Mammalian otolin: A multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein otoconin-90 and cerebellin-1. PLoS ONE 5:e12765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC (2006) Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39:513–522

    Article  PubMed  CAS  Google Scholar 

  • Frost SC (2014) Physiological functions of the alpha class of carbonic anhydrases. Subcell Biochem 75:9–30

    Article  CAS  PubMed  Google Scholar 

  • Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627

    Article  CAS  PubMed  Google Scholar 

  • Grant J, Smith B (1963) Bone marrow gas tensions, bone marrow blood flow, and erythropoiesis in man. Ann Int Med 58:801–809

    Article  CAS  PubMed  Google Scholar 

  • Haddad GG, Boron WF (2000) Na+/HCO3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus. J Neurosci 20:6839–6848

    PubMed  Google Scholar 

  • Henry RP (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 58:523–538

    Article  CAS  PubMed  Google Scholar 

  • Hohling HJ, Barckhaus RH, Drefting ER, Quint P, Athoff J (1978) Quantitative electron microscopy of the early stages of cartilage mineralization. Metab Bone Dis Res 1:109–114

    Article  Google Scholar 

  • Ilan M, Aizenberg J, Gilor O (1996) Dynamics and growth patterns of calcareous sponge spicules. Proc R Soc Lond B 263:133–139

    Article  Google Scholar 

  • Ilies M, Banciu MD, Ilies MA, Scozzafava A, Caproiu MT, Supuran CT (2002) Carbonic anhydrase activators: design of high affinity isozymes I, II and IV activators, incorporating tri-/tetrasubstituted-pyridinium-azole moieties. J Med Chem 45:504–510

    Article  CAS  PubMed  Google Scholar 

  • Ilies M, Scozzafava A, Supuran CT (2004) Carbonic anhydrase activators. In: Supuran CT, Scozzafava A, Conway J (eds) Carbonic anhydrase—its inhibitors and activators. CRC Press, Boca Raton, pp 317–352

    Google Scholar 

  • Innocenti A, Pastorekova S, Pastorek J, Scozzafava A, De Simone G, Supuran CT (2009) The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as an intrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett 19:5825–5828

    Article  CAS  PubMed  Google Scholar 

  • Innocenti A, Hall RA, Scozzafava A, Mühlschlegel FA, Supuran CT (2010) Carbonic anhydrase activators: activation of the β-carbonic anhydrases from the pathogenic fungi Candida albicans and Cryptococcus neoformans with amines and amino acids. Bioorg Med Chem 18:1034–1937

    Article  CAS  PubMed  Google Scholar 

  • Isik S, Kockar F, Aydin M, Arslan O, Guler OO, Innocenti A, Scozzafava A, Supuran CT (2009) Carbonic anhydrase activators: activation of the beta-carbonic anhydrase Nce103 from the yeast Saccharomyces cerevisiae with amines and amino acids. Bioorg Med Chem Lett 19:1662–1665

    Article  CAS  PubMed  Google Scholar 

  • Jones WC (1967) Sheath and axial filament of calcareous sponge spicules. Nature 214:365–368

    Article  Google Scholar 

  • Jones WC (1970) The composition, development, form and orientation of calcareous sponge spicules. Symp Zool Soc Lond 25:91–123

    Google Scholar 

  • Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356

    Article  CAS  Google Scholar 

  • Kulaev IS (1979) The biochemistry of inorganic polyphosphates. Wiley, New York

    Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates. Wiley, Chichester, pp 1–277

    Book  Google Scholar 

  • Laitala T, Väänänen HK (1994) Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H(+)-ATPase. J Clin Invest 93:2311–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF (1993) Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 110:39–54

    Article  CAS  PubMed  Google Scholar 

  • Ledger PW, Jones WC (1977) Spicule formation in the calcareous sponge Sycon ciliatum. Cell Tiss Res 181:553–567

    Article  CAS  Google Scholar 

  • Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Mineral Res 13:803–812

    Article  CAS  Google Scholar 

  • Li W, Chen WS, Zhou PP, Cao L, Yu LJ (2013a) Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase. Colloids Surf B Biointerfaces 102:281–287

    Article  CAS  PubMed  Google Scholar 

  • Li W, Chen WS, Zhou PP, Zhu SL, Yu LJ (2013b) Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chemical Engineering J 218:65–72

    Article  CAS  Google Scholar 

  • Lian JB, Gundberg CM (1988) Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res 226:267–291

    CAS  Google Scholar 

  • Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger from choroid plexus. Proc Natl Acad Sci USA 87:5278–5282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74:1–20

    Article  CAS  PubMed  Google Scholar 

  • Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261

    Article  CAS  PubMed  Google Scholar 

  • Lorenz B, Marmé S, Müller WEG, Unger K, Schröder HC (1994a) Preparation and use of polyphosphate-modified zirconia for purification of nucleic acids and proteins. Anal Biochem 216:118–126

    Article  CAS  PubMed  Google Scholar 

  • Lorenz B, Müller WEG, Kulaev IS, Schröder HC (1994b) Purification and characterization of an exopolyphosphatase activity from Saccharomyces cerevisiae. J Biol Chem 269:22198–22204

    CAS  PubMed  Google Scholar 

  • Lorenz B, Münkner J, Oliveira MP, Kuusksalu A, Leitão JM, Müller WEG, Schröder HC (1997) Changes in metabolism of inorganic polyphosphate in rat tissues and human cells during development and apoptosis. Biochim Biophys Acta 1335:51–60

    Article  CAS  PubMed  Google Scholar 

  • Mahieu I, Hollande E, Carter N (1994) Membrane targeting of carbonic anhydrase II (CAII) in human pancreatic ductal Capan 1 cells in culture. Biochem Soc Trans 22:438S

    Article  CAS  PubMed  Google Scholar 

  • Mann S, Parker SB, Ross MD, Skarnulis AJ, Williams RJ (1983) The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proc R Soc Lond B Biol Sci 218:415–424

    Article  CAS  PubMed  Google Scholar 

  • Margolis DS, Szivek JA, Lai LW, Lien YH (2008) Phenotypic characteristics of bone in carbonic anhydrase II-deficient mice. Calcif Tissue Int 82:66–76

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473:201–209

    Article  CAS  PubMed  Google Scholar 

  • Matsuura A, Kubo T, Doi K, Hayashi K, Morita K, Yokota R, Hayashi H, Hirata I, Okazaki M, Akagawa Y (2009) Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dent Mater J 28:234–242

    Google Scholar 

  • McIntosh JE (1970) Carbonic anhydrase isoenzymes in the erythrocytes and uterus of the rabbit. Biochem J 120:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meldrum FC, Cölfen H (2008) Controlling mineral morphologies and structures in biological and synthetic systems. Chem Rev 108:4332–4432

    Article  CAS  PubMed  Google Scholar 

  • Merkel C, Deuschle J, Griesshaber E, Enders S, Steinhauser E, Hochleitner R, Brand U, Schmahl WW (2009) Mechanical properties of modern calcite- (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation. J Struct Biol 168:396–408

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JH, Choi SH, Smith SA (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119:5972–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    Article  CAS  Google Scholar 

  • Müller WEG (2003) [ed] Silicon biomineralization: biology-biochemistry-molecular biology-biotechnology. Berlin: Springer Press; Progress Molec Subcell Biol, vol 33

    Google Scholar 

  • Müller WEG, Müller I, Zahn RK, Maidhof A (1984) Intraspecific recognition system in scleractinian corals: morphological and cytochemical description of the autolysis mechanism. J Histochem Cytochem 32:285–288

    Article  PubMed  Google Scholar 

  • Müller WEG, Wiens M, Adell T, Gamulin V, Schröder HC, Müller IM (2004) Bauplan of urmetazoa: basis for genetic complexity of Metazoa. Int Rev Cytol 235:53–92

    Article  PubMed  Google Scholar 

  • Müller WEG, Li J, Schröder HC, Qiao L, Wang XH (2007) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232

    Article  Google Scholar 

  • Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Wang XH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U, Schröder HC (2012) Common genetic denominators for Ca++-based skeleton in metazoa: Role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge. PLoS ONE 7:e34617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang XH (2013a) Silicateins—a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Chemistry Eur J 19:5790–5804

    Article  CAS  Google Scholar 

  • Müller WEG, Schröder HC, Schlossmacher U, Grebenjuk VA, Ushijima H, Wang XH (2013b) Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34:8671–8680

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Schröder HC, Schlossmacher U, Neufurth M, Geurtsen W, Korzhev M, Wang XH (2013c) The enzyme carbonic anhydrase as an integral component of biogenic Ca-carbonate formation in sponge spicules. FEBS Open Bio 3:357–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller WEG, Albert O, Schröder HC, Wang XH (2014a) Bio-inorganic nanomaterials for biomedical applications (Bio-silica and polyphosphate). In: Bhushan B, Luo D, Schricker S, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer Press, Berlin, pp 389–408

    Google Scholar 

  • Müller WEG, Neufurth M, Schlossmacher U, Schröder HC, Pisignano D, Wang XH (2014b) The sponge silicatein-interacting protein silintaphin-2 blocks calcite formation of calcareous sponge spicules at the vaterite stage. RSC Adv 4:2577–2585

    Article  Google Scholar 

  • Müller WEG, Schlossmacher U, Schröder HC, Lieberwirth I, Glasser G, Korzhev M, Neufurth M, Wang XH (2014c) Enzyme-accelerated and structure-guided crystallization of Ca-carbonate: role of the carbonic anhydrase in the homologous system. Acta Biomater 10:450–462

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Neufurth M, Huang J, Wang K, Feng Q, Schröder HC, Diehl-Seifert B, Muñoz-Espí R, Wang XH (2015a) Non-enzymatic transformation of amorphous CaCO3 into calcium phosphate mineral after exposure to sodium phosphate in vitro: Implications for in vivo hydroxyapatite bone formation. ChemBioChem 16:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Tolba E, Feng Q, Schröder HC, Markl JS, Kokkinopoulou M, Wang XH (2015b) Amorphous Ca2+ polyphosphate nanoparticles regulate ATP level in bone-like SaOS-2 cells. J Cell Sci 128:2202–2207

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Tolba E, Schröder HC, Wang S, Glaßer G, Muñoz-Espí R, Link T, Wang XH (2015c) A new polyphosphate calcium material with morphogenetic activity. Mater Lett 148:163–166

    Article  CAS  Google Scholar 

  • Müller WEG, Schröder HC, Tolba E, Diehl-Seifert B, Wang XH (2016) Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions. FEBS J 283:74–87

    Article  PubMed  CAS  Google Scholar 

  • Murayama E, Takagi Y, Ohira T, Davis JG, Greene MI, Nagasawa H (2002) Fish otolith contains a unique structural protein, otolin-1. Eur J Biochem 269:688–696

    Article  CAS  PubMed  Google Scholar 

  • Murugan R, Ramakrishna S, Rao KP (2006) Nanoporous hydroxy-carbonate apatite scaffold made of natural bone. Materials Lett 60:2844–2847

    Article  CAS  Google Scholar 

  • Omelon SJ, Grynpas MD (2008) Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev 108:4694–4715

    Article  CAS  PubMed  Google Scholar 

  • Omelon S, Georgiou J, Henneman ZJ, Wise LM, Sukhu B, Hunt T, Wynnyckyj C, Holmyard D, Ryszard B, Grynpas MD (2009) Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4:e5634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JB (2012) The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J Surg Res 173:99–104

    Article  CAS  PubMed  Google Scholar 

  • Parra-Torres AY, Valdés-Flores M, Orozco L, Velázquez-Cruz R (2013) Molecular aspects of bone remodeling. InTech: creative commons attribution license; http://dx.doi.org/10.5772/54905, pp 1–27

  • Pastorekova S, Parkkila S, Pastorek J, Supuran CT (2004) Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem 19(19):199–229

    Article  CAS  PubMed  Google Scholar 

  • Pastorekova S, Vullo D, Nishimori I, Scozzafava A, Pastorek J, Supuran CT (2008) Carbonic anhydrase activators: activation of the human tumor-associated isozymes IX and XII with amino acids and amines. Bioorg Med Chem 16:3530–3536

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino ED, Biltz RM (1970) Calcium carbonate in medullary bone. Calcif Tissue Res 6:168–171

    Article  CAS  PubMed  Google Scholar 

  • Pisam M, Jammet C, Laurent D (2002) First steps of otolith formation of the zebrafish: role of glycogen? Cell Tissue Res 310:163–168

    Article  CAS  PubMed  Google Scholar 

  • Podaropoulos L, Veis AA, Papadimitriou S, Alexandridis C, Kalyvas D (2009) Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix. J Oral Implantol 35:28–36

    Article  PubMed  Google Scholar 

  • Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    CAS  PubMed  Google Scholar 

  • Posner AS, Duyckaerts G (1954) Infrared study of the carbonate in bone, teeth and francolite. Experientia 10:424–425

    Article  CAS  PubMed  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1978) Properties of nucleating systems. Metab Bone Dis Rel Res 1:179–183

    Article  CAS  Google Scholar 

  • Potter C, Harris AL (2004) Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 3:164–167

    Article  CAS  PubMed  Google Scholar 

  • Poyart CF, Bursaux E, Fréminet A (1975) The bone CO2 compartment: evidence for a bicarbonate pool. Respir Physiol 25:89–99

    Article  CAS  PubMed  Google Scholar 

  • Purkerson JM, Schwartz GJ (2005) Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol Regul Integr Comp Physiol 288:R1256–R1263

    Article  CAS  PubMed  Google Scholar 

  • Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T (2013) A comparative study on morphochemical properties and osteogenic cell differentiation within bone graft and coral graft culture systems. Int J Med Sci 10:1608–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramanan R, Kannan K, Sivanesan SD, Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, Chakrabarti T (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987

    Article  CAS  Google Scholar 

  • Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM (1981) Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25 C: a test of a calcite dissolution model. Geochim Cosmochim Acta 45:1281–1289

    Article  CAS  Google Scholar 

  • Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:57–164

    Article  Google Scholar 

  • Rey C, Kim HM, Gerstenfeld L, Glimcher MJ (1996) Characterization of the apatite crystals of bone and their maturation in osteoblast cell culture: comparison with native bone crystals. Connect Tissue Res 35:343–349

    Article  CAS  PubMed  Google Scholar 

  • Richter A, Sanford KK, Evans VJ (1972) Influence of oxygen and culture media on plating efficiency of some mammalian tissue cells. J Natl Cancer Inst 49:1705–1712

    Article  CAS  PubMed  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    CAS  PubMed  Google Scholar 

  • Safadi FF, Barbe MF, Abdelmagid SM, Rico MC, Aswad RA, Litvin J, Popoff SN (2009) Bone structure, development and bone biology. In: Khurana JS (ed) Bone pathology. Springer Science + Business Media, Berlin, pp 1–50

    Chapter  Google Scholar 

  • Sanyal G, Maren TH (1981) Thermodynamics of carbonic anhydrase catalysis. A comparison between human isoenzymes B and C. J Biol Chem 256:608–612

    CAS  PubMed  Google Scholar 

  • Schröder HC, Müller WEG (1999) Inorganic polyphosphates. Biochemistry, biology, biotechnology. Springer, Berlin, vol 23

    Google Scholar 

  • Schröder HC, Kurz L, Müller WEG, Lorenz B (2000) Polyphosphate in bone. Biochemistry (Moscow) 65:296–303

    Google Scholar 

  • Schröder HC, Sudek S, De Caro S, De Rosa S, Perović S, Steffen R, Müller IM, Müller WEG (2002) Synthesis of the neurotoxin quinolinic acid in apoptotic tissue from Suberites domuncula: cell biological, molecular biological and chemical analyses. Mar Biotechnol 4:546–558

    Article  PubMed  CAS  Google Scholar 

  • Schröder H-C, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Schütze J, Custodio MR, Efremova SM, Müller IM, Müller WEG (1999) Evolutionary relationship of metazoa within the eukaryotes based on molecular data from Porifera. Proc Royal Society Lond B 266:63–73

    Article  Google Scholar 

  • Scozzafava A, Supuran CT (2002) Carbonic anhydrase activators: human isozyme II is strongly activated by oligopeptides incorporating the carboxyterminal sequence of the bicarbonate anion exchanger AE1. Bioorg Med Chem Lett 12:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J, Pastorekova S (2014) Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol 4:400; doi:10.3389/fphys.2013.00400

  • Sei Y, Fossom L, Goping G, Skolnick P, Basile AS (1998) Quinolinic acid protects rat cerebellar granule cells from glutamate-induced apoptosis. Neurosci Lett 241:180–184

    Article  CAS  PubMed  Google Scholar 

  • Sethmann I, Wörheide G (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39:209–228

    Article  CAS  PubMed  Google Scholar 

  • Shinohara C, Yamashita K, Matsuo T, Kitamura S, Kawano F (2007) Effects of carbonic anhydrase inhibitor acetazolamide (AZ) on osteoclasts and bone structure. J Hard Tissue Biol 16:115–123

    Article  CAS  Google Scholar 

  • Simkiss K, Wilbur K (1989) Biomineralization. Cell Biology and Mineral Deposition. Academic Press Inc., San Diego

    Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York

    Book  Google Scholar 

  • Sinha KM, Yasuda H, Coombes MM, Dent SYR, de Crombrugghe B (2010) Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J 29:68–79

    Article  CAS  PubMed  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  CAS  PubMed  Google Scholar 

  • Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2004) Carbonic anhydrases: catalytic inhibition mechanisms distribution and physiological roles. In: Carbonic anhydrase: its inhibitors and activators. In: Supuran CT, Scozzafava A, Conway J (eds) CRC Press, Boca Raton, pp 1–23

    Google Scholar 

  • Supuran CT (2008a) Carbonic anhydrases—an overview. Curr Pharm Des 14:603–614

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2008b) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2009) Carbonic anhydrases as drug targets: General presentation. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken, pp 13–38

    Chapter  Google Scholar 

  • Supuran CT (2011) Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Med Chem 3:1165–1180

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2016) How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 31:345–360

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A (2000a) Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Patents 10:575–600

    Article  CAS  Google Scholar 

  • Supuran CT, Scozzafava A (2000b) Carbonic anhydrase activators: synthesis of high affinity isozymes I, II and IV activators, derivatives of 4-(arylsulfonylureido-amino acyl)ethyl-1H-imidazole. J Enzyme Inhib 15:471–486

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT, Scozzafava A (2000c) Activation of carbonic anhydrase isozymes. In: Chegwidden WR, Carter N, Edwards Y (eds) The carbonic anhydrases—new horizons. Birkhauser, Basel, pp 197–219

    Chapter  Google Scholar 

  • Supuran CT, Casini A, Scozzafava A (2004a) Development of sulfonamide carbonic anhydrase inhibitors. In: Supuran CT, Scozzafava A, Conway J (eds) Carbonic anhydrase: its inhibitors and activators. CRC Press, Boca Raton, pp 67–147

    Google Scholar 

  • Supuran CT, Vullo D, Manole G, Casini A, Scozzafava A (2004b) Designing of novel carbonic anhydrase inhibitors and activators. Curr Med Chem Cardiovasc Hematol Agents 2:49–68

    Article  CAS  PubMed  Google Scholar 

  • Temperini C, Scozzafava A, Puccetti L, Supuran CT (2005) Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators. Bioorg Med Chem Lett 15:5136–5141

    Article  CAS  PubMed  Google Scholar 

  • Temperini C, Scozzafava A, Supuran CT (2006a) Carbonic anhydrase activators: the first X-ray crystallographic study of an adduct of isoform I. Bioorg Med Chem Lett 16:5152–5156

    Article  CAS  PubMed  Google Scholar 

  • Temperini C, Scozzafava A, Vullo D, Supuran CT (2006b) Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme. Chemistry 12:7057–7066

    Article  CAS  PubMed  Google Scholar 

  • Temperini C, Scozzafava A, Vullo D, Supuran CT (2006c) Carbonic anhydrase activators. Activation of isoforms I, II, IV, VA, VII, and XIV with L- and D-phenylalanine and crystallographic analysis of their adducts with isozyme II: stereospecific recognition within the active site of an enzyme and its consequences for the drug design. J Med Chem 49:3019–3027

    Article  CAS  PubMed  Google Scholar 

  • Temperini C, Innocenti A, Scozzafava A, Mastrolorenzo A, Supuran CT (2007) Carbonic anhydrase activators: L-Adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Bioorg Med Chem Lett 17:628–635

    Article  CAS  PubMed  Google Scholar 

  • Temperini C, Innocenti A, Scozzafava A, Supuran CT (2008) Carbonic anhydrase activators: kinetic and X-ray crystallographic study for the interaction of D-and L-tryptophan with the mammalian isoforms I-XIV. Bioorg Med Chem 16:8373–8378

    Article  CAS  PubMed  Google Scholar 

  • Termine JD, Eanes ED, Greenfield DJ, Nylen MU, Harper RA (1973) Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calcif Tissue Res 12:73–90

    Article  CAS  PubMed  Google Scholar 

  • Thrailkill KM, Jo CH, Cockrell GE, Moreau CS, Lumpkin CK Jr, Fowlkes JL (2012) Determinants of undercarboxylated and carboxylated osteocalcin concentrations in type 1 diabetes. Osteoporos Int 23:1799–1806

    Article  CAS  PubMed  Google Scholar 

  • Tolba E, Müller WEG, El-Hady BMA, Neufurth M, Wurm F, Wang S, Schröder HC, Wang XH (2015) High biocompatibility and improved osteogenic potential of amorphous calcium carbonate/vaterite. J Mat Chem B 4:376–386

    Article  CAS  Google Scholar 

  • Towe KM, Lowenstam HA (1967) Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (mollusca). J Ultrastruct Res 17:1–13

    Article  CAS  PubMed  Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  CAS  PubMed  Google Scholar 

  • Trisi P, Rao W, Rebaudi A, Fiore P (2003) Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects. Int J Periodontics Restorative Dent 23:69–77

    PubMed  Google Scholar 

  • Uriz MJ (2006) Mineral skeletogenesis in sponges. Can J Zool 84:322–356

    Article  CAS  Google Scholar 

  • Van Wazer JR (1958) Phosphorus and its compounds: chemistry, vol 1. Interscience Publishers, New York

    Google Scholar 

  • Vezzoli A, Gussoni M, Greco F, Zetta L (2003) Effects of temperature and extracellular pH on metabolites: kinetics of anaerobic metabolism in resting muscle by 31P- and 1H-NMR spectroscopy. J Exp Biol 206:3043–3052

    Article  CAS  PubMed  Google Scholar 

  • Vullo D, Nishimori I, Scozzafava A, Supuran CT (2008) Carbonic anhydrase activators: activation of the human cytosolic isozyme III and membrane-associated isoform IV with amino acids and amines. Bioorg Med Chem Lett 18:4303–4307

    Article  CAS  PubMed  Google Scholar 

  • Vullo D, Del Prete S, Capasso C, Supuran CT (2016) Carbonic anhydrase activators: activation of the β-carbonic anhydrase from Malassezia globosa with amines and amino acids. Bioorg Med Chem Lett 26:1381–1385

    Article  CAS  PubMed  Google Scholar 

  • Walker G (2003) Snowball earth: the story of the great global catastrophe that spawned life as we know it. Crown Publishers, New York

    Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor-1. J Biol Chem 270:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578

    Article  CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Diehl-Seifert B, Kropf K, Schlossmacher U, Wiens M, Müller WEG (2013) Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. J Tissue Engin Regen Med 7:767–776

    CAS  Google Scholar 

  • Wang XH, Schröder HC, Müller WEG (2014a) Biocalcite, a multifunctional inorganic polymer: building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone. Beilstein J Nanotechnol 5:610–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XH, Schröder HC, Müller WEG (2014b) Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine. Trends Biotechnol 32:441–447

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Schröder HC, Müller WEG (2014c) Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine. Int Rev Cell Mol Biol 313:27–77

    Article  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Schloßmacher U, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG (2014d) Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int 94:495–509

    Article  CAS  PubMed  Google Scholar 

  • Wang SF, Wang XH, Draenert FG, Albert O, Schröder HC, Mailänder V, Mitov G, Müller WEG (2014e) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Ackermann M, Wang SF, Tolba E, Neufurth M, Feng QL, Schröder HC, Müller WEG (2016) Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats. Biomed Mater 11:035005. doi:10.1088/1748-6041/11/3/035005

    Article  PubMed  CAS  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Ann Rev Mat Sci 28:271–298

    Article  CAS  Google Scholar 

  • Weiner S, Mahamid J, Politi Y, Ma Y, Addadi L (2009) Overview of the amorphous precursor phase strategy in biomineralization. Front Mater Sci Chin 3:104–108

    Article  Google Scholar 

  • Wiens M, Wang XH, Schloßmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010a) Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Wang XH, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WEG (2010b) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblastlike cells. Biomaterials 31:7716–7725

    Article  CAS  PubMed  Google Scholar 

  • Wiens M, Schröder HC, Wang XH, Link T, Steindorf D, Müller WEG (2011) Isolation of the silicatein-α interactor silintaphin-2 by a novel solid-phase pull-down assay. Biochemistry 50:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Wilbur KM, Jodrey LH (1955) Studies on shell formation. V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365

    Article  CAS  Google Scholar 

  • Winum JY, Montero JL, Scozzafava A, Supuran CT (2009) Zinc binding functions in the design of carbonic anhydrase inhibitors. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken, pp 39–72

    Chapter  Google Scholar 

  • Wistrand J, Lindahl S, Wåhlstrand T (1975) Human renal carbonic anhydrase. Purification and properties. Eur J Biochem 57:189–195

    Article  CAS  PubMed  Google Scholar 

  • Wood HG, Clark JE (1988) Biological aspects of inorganic polyphosphates. Annu Rev Biochem 57:235–260

    Article  CAS  PubMed  Google Scholar 

  • Wood GM, Suttie JW (1988) Vitamin K-dependent carboxylase. J Biol Chem 263:3234–3239

    CAS  PubMed  Google Scholar 

  • Xie B, Nancollas GH (2010) How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci USA 107:22369–22370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Xue LM, Han T, Jiao L, Qin LP, Li YS, Zheng HC, Zhang QY (2010) Antiosteoporotic effects and proteomic characterization of the target and mechanism of an Er-Xian Decoction on osteoblastic UMR-106 and osteoclasts induced from RAW264.7. Molecules 15:4695–4710

    Article  CAS  PubMed  Google Scholar 

  • Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80:51–60

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

W.E.G.M. is a holder of an ERC Advanced Investigator Grant (no 268476 “BIOSILICA”) as well as of the two ERC Proof-of-Concept grants “Si-Bone-PoC” (no. 324564) and “MorphoVES-PoC” (No. 662486). This work was supported by grants from the European Commission (large-scale integrating project “BlueGenics” No. 266033 and project “Bio-Scaffolds” No. 604036), as well as the BiomaTiCS research initiative of the University Medical Center Mainz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Werner E. G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, X., Neufurth, M., Tolba, E., Wang, S., Schröder, H.C., Müller, W.E.G. (2017). Biocalcite and Carbonic Acid Activators. In: Müller, W., Schröder, H., Wang, X. (eds) Blue Biotechnology. Progress in Molecular and Subcellular Biology(), vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-51284-6_7

Download citation

Publish with us

Policies and ethics