Skip to main content

Optimization of an “Adsorbent/Heat Exchanger” Unit

  • Chapter
  • First Online:
Dynamics of Adsorptive Systems for Heat Transformation

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 451 Accesses

Abstract

Despite significant progress, the AHT technology as yet remains unfinished and expensive, so that there is still a big room for its improvement [1, 2]. This concerns, first of all, enhancement of the AHT dynamics, like the ad/desorption rate and finally the specific power that is the main figure of merit of the AHT dynamic performance. Therefore, further R&D activity is necessary to realize the potential economic and ecological advantages of the AHT technology [3]. The optimization of the AHT dynamic performance is a multi-purpose task that includes, first of all, the improvement of the “adsorbent–heat exchanger” unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adsorptive Chiller

Ad-HEx:

Adsorbent Heat Exchanger

AHT:

Adsorptive Heat Transformer

C :

Gas/vapour molar density, mol m−3

COP :

Coefficient of Performance

d :

Grain’s diameter, mm

D:

Diffusivity, m2 s−1

LTJ:

Large Temperature Jump method

V-LTJ:

Volumetric Version of Large Temperature Jump method

HEx:

Heat Exchanger

J :

Heat flux, W

L :

Adsorbent layer thickness, mm; HEx length, m

m :

Dry adsorbent mass, kg

M :

HEx’s mass, kg

N :

Moles of air molecules

P :

Pressure, Pa

R :

Grain radius, mm; adsorption-to-desorption time ratio, s/s; universal gas constant, J mol−1 K

S :

HEx heat transfer surface area, m2

SCP :

Specific Cooling Power, W kg−1

SP :

Specific Power

T :

Temperature, K

TD :

Temperature Driven

t :

Time, s; cycle time, s

U :

Overall heat transfer coefficient, W m−2 K−1

v :

Velocity of the convective flux, m s−1

V :

HEx’s volume, dm3; volumetric flow rate, dm3 min−1

VCP :

Volumetric Cooling Power, W/dm3

w :

Water uptake, g g−1; HEx’s width

W :

Specific cooling power, W kg−1

z :

Coordinate in the direction perpendicular to the flat adsorbent bed, m

ρ :

Adsorbent layer density, kg m−3

τ:

Characteristic time, s

0:

Initial stage

a:

Air

ads:

Adsorbent/adsorption

Con:

Condensation

conv:

Convective

des:

Desorption

dif:

Diffusional

ev:

Evaporation

f:

Fin

H:

High

L:

Low

M:

Medium

min:

Minimal

mt:

Mass transfer

reg:

Regeneration

v:

Vapour

References

  1. F. Ziegler, Sorption heat pumping technologies: comparisons and challenges. Int. J. Refrig. 32, 566–576 (2009)

    Article  Google Scholar 

  2. F. Meunier, Adsorption heat powered heat pumps. Appl. Therm. Eng. 61, 830–836 (2013)

    Article  Google Scholar 

  3. YuI Aristov, Optimum adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 32, 675–686 (2009)

    Article  Google Scholar 

  4. F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Thermal Eng. 18, 715–729 (1998)

    Article  Google Scholar 

  5. R.Z. Wang, Z.Z. Xia, L.W. Wang, Z.S. Lu, S.L. Li, T.X. Li et al., Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy. Energy 36, 5425–5439 (2011)

    Article  Google Scholar 

  6. J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 33, 1233–1249 (2009)

    Article  Google Scholar 

  7. YuI Aristov, Experimental and numerical study of adsorptive chiller dynamics: a loose grains configuration. Appl. Thermal Eng. 61, 847 (2013). 841

    Article  Google Scholar 

  8. A. Freni, L. Bonaccorsi, L. Calabrese, A. Caprì, A. Frazzica, A. Sapienza, SAPO-34 coated adsorbent heat exchanger for adsorption chillers. Appl. Thermal Eng. 82, 1–7 (2015)

    Article  Google Scholar 

  9. A. Sapienza, S. Santamaria, A. Frazzica, A. Freni, I.S. Girnik, YuI Aristov, Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers. Appl. Energy 134, 11–19 (2014)

    Article  Google Scholar 

  10. A. Sapienza, A. Frazzica, A. Freni, YuI Aristov, Dramatic effect of residual gas on dynamics of isobaric adsorption stage of an adsorptive chiller. Appl. Thermal Eng. 96, 385–390 (2016)

    Article  Google Scholar 

  11. YuI Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig. 35, 525–531 (2012)

    Article  Google Scholar 

  12. YuI Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Thermal Engn. 72, 166–175 (2014)

    Article  Google Scholar 

  13. D.M. Ruthven, Principles of adsorption and adsorption processes (Wiley, New York, 1984)

    Google Scholar 

  14. YuI Aristov, I.S. Girnik, I.S. Glaznev, Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 46, 484–492 (2012)

    Article  Google Scholar 

  15. I.S. Girnik, YuI Aristov, Dynamic optimization of adsorptive chillers: the “AQSOA™-FAM-Z02—water” working pair. Energy 106, 13–22 (2016)

    Article  Google Scholar 

  16. K.C. Leong, Y. Liu, Numerical modelling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system. Appl. Thermal Eng. 24, 2359–2374 (2004)

    Article  Google Scholar 

  17. H. Niazmand, I. Dabzadeh, Numerical simulation of heat and mass transfer in adsorbent beds with annular fins. Int. J. Refrig. 35, 581–593 (2012)

    Article  Google Scholar 

  18. L.G. Gordeeva, Y. Aristov, Dynamic study of methanol adsorption on activated carbon ACM-35.4 for enhancing the specific cooling power of adsorptive chillers. Appl. Energy 117, 127–133 (2014)

    Article  Google Scholar 

  19. I.S. Girnik, Yu.I. Aristov, A HeCol cycle for upgrading the ambient heat: the dynamic verification of desorption stage, Int. J. HMT (2017) (submitted)

    Google Scholar 

  20. L.X. Gong, R.Z. Wang, Z.Z. Xia, C.J. Chen, Design and performance prediction of a new generation adsorption chiller using composite adsorbent. Energy Convers. Manag. 52, 2345–2350 (2011)

    Google Scholar 

  21. Tamainot-Telto Z., Metcalf S.J., Critoph R.E. Novel compact sorption generators for car air conditioning. Int. J. Refrig. 32, 727–733 (2009)

    Google Scholar 

  22. J.V. Veselovskaya, R.E. Critoph, R.N. Thorpe, S. Metcalf, M.M. Tokarev, Y.I. Aristov, Novel ammonia sorbents ‘‘porous matrix modified by active salt” for adsorptive heat transformation: 3. Testing of ‘‘BaCl2/vermiculite” composite in a lab-scale adsorption chiller. Appl. Thermal Eng. 30, 1188–1192 (2010)

    Google Scholar 

  23. A. Freni, F. Russo, S. Vasta, M.M. Tokarev, Yu.I. Aristov, G. Restuccia, An advanced solid sorption chiller using SWS-1L. Appl. Thermal Eng. 27, 2200–2204 (2007)

    Google Scholar 

  24. U. Jakob, P. Kohlenbach, Recent developments of sorption chillers in Europe. IIR Bull. N 5, 34–40 (2010)

    Google Scholar 

  25. I.S. Glaznev, Y.I. Aristov, The effect of cycle boundary conditions and adsorbent grain size on dynamics of adsorption chillers. Int. J. Heat Mass Transfer. 53, 1893–1898 (2010)

    Google Scholar 

  26. W.S. Chang, C.C. Wang, C.C. Shieh, Experimental study of a solid adsorption cooling system using flat-tube heat exchanger as adsorption bed. Appl. Thermal Eng. 27, 2199 (2007). 2195

    Google Scholar 

  27. A. Sapienza, S. Santamaria, A. Frazzica, A. Freni, Influence of the management strategy and operating conditions on the performance of an adsorption chiller. Energy 36, 5538 (2011). 5532

    Article  Google Scholar 

  28. A. Sharafian, S.M.N. Mehr, W. Huttema, M. Bahrami, Effects of different adsorber bed designs on in-situ water uptake rate measurements of AQSOA™-FAM-Z02 for vehicle air conditioning applications. Appl. Thermal Eng. 98, 568–574 (2016)

    Article  Google Scholar 

  29. YuI Aristov, Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)

    Article  Google Scholar 

  30. T. Miyazaki, A. Akisawa, The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers. Appl. Thermal Eng. 29, 2717 (2009). 2708

    Article  Google Scholar 

  31. L.G. Gordeeva, A. Frazzica, A. Sapienza, Yu. Aristov, A. Freni, Adsorption cooling utilizing the “LiBr/silica – ethanol” working pair: dynamic optimization of the adsorber/heat exchanger. Energy 75, 390–399 (2014)

    Article  Google Scholar 

  32. F. Meunier, Adsorption heat powered heat pumps. Appl. Thermal Eng. 61, 830–836 (2013)

    Article  Google Scholar 

  33. A. Sapienza, G. Gullì, Luigi Calabrese, V. Palomba, A. Frazzica, V. Brancato, D. La Rosa, S. Vasta, A. Freni, L. Bonaccorsi, G. Cacciola, An innovative adsorption chiller prototype based on 3 hybrid coated/granular adsorbers. Appl. Energy 179, 929–938 (2016)

    Article  Google Scholar 

  34. D.A. Frank-Kamenetskiy, Diffusion and heat transfer in chemical kinetics (Nauka, Moscow, 1967)

    Google Scholar 

  35. M. Tatler, A. Erdem-Senatalar, When do thin zeolite layers and a large void volume in the adsorber limit the performance of adsorption heat pumps? Micropor. Mesopor. Mater. 54(1–2), 89–96 (2002)

    Article  Google Scholar 

  36. T. Miyazaki, A. Akisawa, B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, A new cycle time allocation for enhancing the performance of two-bed adsorption chillers. Int. J. Refrig. 32, 846–853 (2009)

    Article  Google Scholar 

  37. T. Miyazaki, A. Akisawa, B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, A new cycle time allocation for enhancing the performance of two-bed adsorption chillers. Int. J. Refrig. 32, 846–853 (2009)

    Article  Google Scholar 

  38. I.I. El-Sharkawy, H. Abdel Meguid, B.B. Saha, Towards an optimum performance of adsorption chillers: reallocation of adsorption/desorption cycle times. Int. J. Heat Mass Transf. 63, 171–182 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Sapienza .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapienza, A., Frazzica, A., Freni, A., Aristov, Y. (2018). Optimization of an “Adsorbent/Heat Exchanger” Unit. In: Dynamics of Adsorptive Systems for Heat Transformation. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-51287-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51287-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51285-3

  • Online ISBN: 978-3-319-51287-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics