Skip to main content

A Review on Model Reduction by Moment Matching for Nonlinear Systems

  • Chapter
  • First Online:
Feedback Stabilization of Controlled Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 473))

  • 1324 Accesses

Abstract

The model reduction problem for nonlinear systems and nonlinear time-delay systems based on the steady-state notion of moment is reviewed. We show how this nonlinear description of moment is used to pose and solve the model reduction problem by moment matching for nonlinear systems, to develop a notion of frequency response for nonlinear systems, and to solve model reduction problems in the presence of constraints on the reduced order model. Model reduction of nonlinear time-delay systems is then discussed. Finally, the problem of approximating the moment of nonlinear, possibly time-delay, systems from input/output data is briefly illustrated.

Dedicated to Laurent: a pioneer in the land of control

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The matrices A, B, C, and the zeros of (2.9) fix the moments. Then, given any observable pair (LS) with S a non-derogatory matrix with characteristic polynomial (2.9), there exists an invertible matrix \(T\in \mathbb {R}^{\nu \times \nu }\) such that the elements of the vector \(C\varPi T^{-1}\) are equal to the moments.

  2. 2.

    A matrix is non-derogatory if its characteristic and minimal polynomials coincide.

  3. 3.

    Note that the results of this section are local.

  4. 4.

    See [53, Chapter 8] for the definition of Poisson stability.

  5. 5.

    \(V_\xi \) and \(V_{\xi \xi }\) denote, respectively, the gradient and the Hessian matrix of the scalar function \(V:\ \xi \mapsto V(\xi )\).

References

  1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM Advances in Design and Control, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  2. Adamjan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem. Math. USSR Sb. 15, 31–73 (1971)

    Article  MATH  Google Scholar 

  3. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L\(^{\infty }\)-error bounds. Int. J. Control 39(6), 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Safonov, M.G., Chiang, R.Y., Limebeer, D.J.N.: Optimal Hankel model reduction for nonminimal systems. IEEE Trans. Autom. Control 35(4), 496–502 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meyer, D.G.: Fractional balanced reduction: model reduction via a fractional representation. IEEE Trans. Autom. Control 35(12), 1341–1345 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gray, W.S., Mesko, J.: General input balancing and model reduction for linear and nonlinear systems. In: European Control Conference. Brussels, Belgium (1997)

    Google Scholar 

  8. Lall, S., Beck, C.: Error bounds for balanced model reduction of linear time-varying systems. IEEE Trans. Autom. Control 48(6), 946–956 (2003)

    Article  MathSciNet  Google Scholar 

  9. Kimura, H.: Positive partial realization of covariance sequences. In: Modeling, Identification and Robust Control, pp. 499–513 (1986)

    Google Scholar 

  10. Byrnes, C.I., Lindquist, A., Gusev, S.V., Matveev, A.S.: A complete parameterization of all positive rational extensions of a covariance sequence. IEEE Trans. Autom. Control 40, 1841–1857 (1995)

    Google Scholar 

  11. Georgiou, T.T.: The interpolation problem with a degree constraint. IEEE Trans. Autom. Control 44, 631–635 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Antoulas, A.C., Ball, J.A., Kang, J., Willems, J.C.: On the solution of the minimal rational interpolation problem. In: Linear Algebra and its Applications, Special Issue on Matrix Problems, vol. 137–138, pp. 511–573 (1990)

    Google Scholar 

  13. Byrnes, C.I., Lindquist, A., Georgiou, T.T.: A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint. IEEE Trans. Autom. Control 46, 822–839 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: Model reduction and the solution of Sylvester equations. In: MTNS, Kyoto (2006)

    Google Scholar 

  15. Beattie, C.A., Gugercin, S.: Interpolation theory for structure-preserving model reduction. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008)

    Google Scholar 

  16. Al-Baiyat, S.A., Bettayeb, M., Al-Saggaf, U.M.: New model reduction scheme for bilinear systems. Int. J. Syst. Sci. 25(10), 1631–1642 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lall, S., Krysl, P., Marsden, J.: Structure-preserving model reduction for mechanical systems. Phys. D 184, 304–318 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Soberg, J., Fujimoto, K., Glad, T.: Model reduction of nonlinear differential-algebraic equations. In: IFAC Symposium Nonlinear Control Systems, Pretoria, South Africa, vol. 7, pp. 712–717 (2007)

    Google Scholar 

  19. Fujimoto, K.: Balanced realization and model order reduction for port-Hamiltonian systems. J. Syst. Des. Dyn. 2(3), 694–702 (2008)

    Google Scholar 

  20. Scherpen, J.M.A., Gray, W.S.: Minimality and local state decompositions of a nonlinear state space realization using energy functions. IEEE Trans. Autom. Control 45(11), 2079–2086 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gray, W.S., Scherpen, J.M.A.: Nonlinear Hilbert adjoints: properties and applications to Hankel singular value analysis. In: Proceedings of the 2001 American Control Conference, vol. 5, pp. 3582–3587 (2001)

    Google Scholar 

  22. Verriest, E., Gray, W.: Dynamics near limit cycles: model reduction and sensitivity. In: Symposium on Mathematical Theory of Networks and Systems, Padova, Italy (1998)

    Google Scholar 

  23. Gray, W.S., Verriest, E.I.: Balanced realizations near stable invariant manifolds. Automatica 42(4), 653–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunisch, K., Volkwein, S.: Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102(2), 345–371 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational and Applied Mathematics, pp. 261–306. Springer (2005)

    Google Scholar 

  26. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  27. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. ESAIM Math. Modell. Numer. Anal. 42(01), 1–23 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control 53(10), 2237–2251 (2008)

    Article  MathSciNet  Google Scholar 

  29. Lall, S., Marsden, J.E., Glavaski, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12, 519–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fujimoto, K., Tsubakino, D.: Computation of nonlinear balanced realization and model reduction based on Taylor series expansion. Syst. Control Lett. 57(4), 283–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Blondel, V.D., Megretski, A.: Unsolved Problems in Mathematical Systems and Control Theory. Princeton University Press (2004)

    Google Scholar 

  32. Mäkilä, P.M., Partington, J.R.: Laguerre and Kautz shift approximations of delay systems. Int. J. Control 72, 932–946 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mäkilä, P.M., Partington, J.R.: Shift operator induced approximations of delay systems. SIAM J. Control Optim. 37(6), 1897–1912 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, J., Knospe, C.R., Tsiotras, P.: Stability of linear time-delay systems: a delay-dependent criterion with a tight conservatism bound. In: Proceedings of the 2000 American Control Conference, Chicago, IL, pp. 1458–1462, June 2000

    Google Scholar 

  35. Al-Amer, S.H., Al-Sunni, F.M.: Approximation of time-delay systems. In: Proceedings of the 2000 American Control Conference, Chicago, IL, pp. 2491–2495, June 2000

    Google Scholar 

  36. Banks, H.T., Kappel, F.: Spline approximations for functional differential equations. J. Differ. Equ. 34, 496–522 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gu, G., Khargonekar, P.P., Lee, E.B.: Approximation of infinite-dimensional systems. IEEE Trans. Autom. Control 34(6) (1992)

    Google Scholar 

  38. Glover, K., Lam, J., Partington, J.R.: Rational approximation of a class of infinite dimensional system i: singular value of hankel operator. Math. Control Circ. Syst. 3, 325–344 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Glader, C., Hognas, G., Mäkilä, P.M., Toivonen, H.T.: Approximation of delay systems: a case study. Int. J. Control 53(2), 369–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ohta, Y., Kojima, A.: Formulas for Hankel singular values and vectors for a class of input delay systems. Automatica 35, 201–215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yoon, M.G., Lee, B.H.: A new approximation method for time-delay systems. IEEE Trans. Autom. Control 42(7), 1008–1012 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Michiels, W., Jarlebring, E., Meerbergen, K.: Krylov-based model order reduction of time-delay systems. SIAM J. Matrix Anal. Appl. 32(4), 1399–1421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jarlebring, E., Damm, T., Michiels, W.: Model reduction of time-delay systems using position balancing and delay Lyapunov equations. Math. Control Signals Syst. 25(2), 147–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Q., Wang, Y., Lam, E.Y., Wong, N.: Model order reduction for neutral systems by moment matching. Circuits Syst. Signal Process. 32(3), 1039–1063 (2013)

    Article  MathSciNet  Google Scholar 

  45. Ionescu, T.C., Iftime, O.V.: Moment matching with prescribed poles and zeros for infinite-dimensional systems. In: American Control Conference, Montreal, Canada, pp. 1412–1417, June 2012

    Google Scholar 

  46. Iftime, O.V.: Block circulant and block Toeplitz approximants of a class of spatially distributed systems-An LQR perspective. Automatica 48(12), 3098–3105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Astolfi, A.: Model reduction by moment matching, steady-state response and projections. In: Proceedings of the 49th IEEE Conference on Decision and Control (2010)

    Google Scholar 

  48. Astolfi, A.: Model reduction by moment matching for linear and nonlinear systems. IEEE Trans. Autom. Control 55(10), 2321–2336 (2010)

    Article  MathSciNet  Google Scholar 

  49. Scarciotti, G., Astolfi, A.: Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays. IEEE Trans. Autom. Control 61(6), 1438–1451 (2016)

    Google Scholar 

  50. Scarciotti, G., Astolfi, A.: Model reduction for linear systems and linear time-delay systems from input/output data. In: 2015 European Control Conference, Linz, pp. 334–339, July 2015

    Google Scholar 

  51. Scarciotti, G., Astolfi, A.: Model reduction for nonlinear systems and nonlinear time-delay systems from input/output data. In: Proceedings of the 54th IEEE Conference on Decision and Control, Osaka, Japan, 15–18 Dec 2015

    Google Scholar 

  52. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering, 3rd edn. Springer (1995)

    Google Scholar 

  54. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Macmillan, New York (1992)

    Google Scholar 

  55. Antoulas, A.C.: A new result on passivity preserving model reduction. Syst. Control Lett. 54(4), 361–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sorensen, D.C.: Passivity preserving model reduction via interpolation of spectral zeros. Syst. Control Lett. 54(4), 347–360 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hespel, C., Jacob, G.: Approximation of nonlinear dynamic systems by rational series. Theor. Comput. Sci. 79(1), 151–162 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hespel, C.: Truncated bilinear approximants: Carleman, finite Volterra, Padé-type, geometric and structural automata. In: Jacob, G., Lamnabhi-Lagarrigue, F. (eds.) Algebraic Computing in Control. Lecture Notes in Control and Information Sciences, vol. 165, pp. 264–278. Springer (1991)

    Google Scholar 

  59. Gallivan, K., Vandendorpe, A., Van Dooren, P.: Sylvester equations and projection-based model reduction. J. Comput. Appl. Math. 162(1), 213–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. Dib, W., Astolfi, A., Ortega, R.: Model reduction by moment matching for switched power converters. In: Proceedings of the 48th IEEE Conference on Decision and Control, Held Jointly with the 28th Chinese Control Conference, pp. 6555–6560, Dec 2009

    Google Scholar 

  61. Ionescu, T.C., Astolfi, A., Colaneri, P.: Families of moment matching based, low order approximations for linear systems. Syst. Control Lett. 64, 47–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Scarciotti, G., Astolfi, A.: Characterization of the moments of a linear system driven by explicit signal generators. In: Proceedings of the 2015 American Control Conference, Chicago, IL, pp. 589–594, July 2015

    Google Scholar 

  63. Scarciotti, G., Astolfi, A.: Model reduction by matching the steady-state response of explicit signal generators. IEEE Trans. Autom. Control 61(7), 1995–2000 (2016)

    Google Scholar 

  64. Scarciotti, G., Astolfi, A.: Data-driven model reduction by moment matching for linear and nonlinear systems. Automatica 79, 340–351 (2017)

    Google Scholar 

  65. Scarciotti, G.: Low computational complexity model reduction of power systems with preservation of physical characteristics. IEEE Trans. Power Syst. 32(1), 743–752 (2017)

    Google Scholar 

  66. Scarciotti, G., Astolfi, A.: Moment based discontinuous phasor transform and its application to the steady-state analysis of inverters and wireless power transfer systems. IEEE Trans. Power Electron. 31(12), 8448–8460 (2016)

    Google Scholar 

  67. Isidori, A., Byrnes, C.I.: Steady-state behaviors in nonlinear systems with an application to robust disturbance rejection. Annu. Rev. Control 32(1), 1–16 (2008)

    Article  Google Scholar 

  68. Scarciotti, G., Astolfi, A.: Model reduction for hybrid systems with state-dependent jumps. In: IFAC Symposium Nonlinear Control Systems, Monterey, CA, USA, pp. 862–867 (2016)

    Google Scholar 

  69. Scarciotti, G., Jiang, Z.P., Astolfi, A.: Constrained optimal reduced-order models from input/output data. In: Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 7453–7458, 12–14 Dec 2016

    Google Scholar 

  70. Padoan, A., Scarciotti, G., Astolfi, A.: A geometric characterisation of persistently exciting signals generated by autonomous systems. In: IFAC Symposium Nonlinear Control Systems, Monterey, CA, USA, pp. 838–843 (2016)

    Google Scholar 

  71. Isidori, A., Byrnes, C.I.: Steady state response, separation principle and the output regulation of nonlinear systems. In: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, USA, pp. 2247–2251 (1989)

    Google Scholar 

  72. Isidori, A., Byrnes, C.I.: Output regulation of nonlinear systems. IEEE Trans. Autom. Control 35(2), 131–140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  73. Hale, J.K.: Theory of functional differential equations. Applied Mathematical Sciences Series. Springer Verlag Gmbh (1977)

    Google Scholar 

  74. Hale, J.K.: Behavior near constant solutions of functional differential equations. J. Differ. Equ. 15, 278–294 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  75. Byrnes, C.I., Spong, M.W., Tarn, T.J.: A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. Math. Syst. Theory 17(1), 97–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  76. Bian, T., Jiang, Y., Jiang, Z.P.: Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. Automatica 50(10), 2624–2632 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Astolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Scarciotti, G., Astolfi, A. (2017). A Review on Model Reduction by Moment Matching for Nonlinear Systems. In: Petit, N. (eds) Feedback Stabilization of Controlled Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 473. Springer, Cham. https://doi.org/10.1007/978-3-319-51298-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51298-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51297-6

  • Online ISBN: 978-3-319-51298-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics