Skip to main content

Robotic-Assisted Cardiac Surgery

  • Chapter
  • First Online:
The SAGES Manual of Robotic Surgery

Abstract

Although the da Vinci robot’s first use in cardiac surgery dates back to 1998, the complexity of cardiac surgical interventions resulted in slowed adoption of robotic technology in the specialty. However, concurrent technological advances over the last decade in the areas of cardiopulmonary bypass, cardiac anesthesia, and myocardial protection and stabilization have facilitated broader adoption of robotic-assisted cardiac surgery. Robotic technology is now commonly used in many centers for the treatment of cardiac valvular and coronary disease. In addition to smaller incisions and improved cosmesis, advantages of robotic-assisted cardiac procedures include shorter hospital lengths of stay, decreased perioperative morbidity, and an earlier return to preoperative functional level. This chapter will describe the technique and outcomes of robotic-assisted coronary bypass surgery, as well as the application of robotic technology to other cardiac surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Carpentier A, Loulmet D, Aupècle B, Kieffer JP, Tournay D, Guibourt P, et al. [Computer assisted open heart surgery. First case operated on with success]. C R Acad Sci III. 1998;321(5):437–42.

    Google Scholar 

  2. Halkos ME, Vassiliades TA, Myung RJ, Kilgo P, Thourani VH, Cooper WA, et al. Sternotomy versus nonsternotomy LIMA-LAD grafting for single-vessel disease. Ann Thorac Surg. 2012;94(5):1469–77.

    Article  Google Scholar 

  3. Halkos ME, Liberman HA, Devireddy C, Walker P, Finn AV, Jaber W, et al. Early clinical and angiographic outcomes after robotic-assisted coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2014;147(1):179–85.

    Article  Google Scholar 

  4. Nesher N, Bakir I, Casselman F, Degrieck I, De Geest R, Wellens F, et al. Robotically enhanced minimally invasive direct coronary artery bypass surgery: a winning strategy? J Cardiovasc Surg (Torino). 2007;48(3):333–8.

    CAS  Google Scholar 

  5. Harskamp RE, Williams JB, Halkos ME, Lopes RD, Tijssen JGP, Ferguson TB, et al. Meta-analysis of minimally invasive coronary artery bypass versus drug-eluting stents for isolated left anterior descending coronary artery disease. J Thorac Cardiovasc Surg. 2014;148(5):1837–42.

    Article  Google Scholar 

  6. Harskamp RE, Bagai A, Halkos ME, Rao SV, Bachinsky WB, Patel MR, et al. Clinical outcomes after hybrid coronary revascularization versus coronary artery bypass surgery: a meta-analysis of 1,190 patients. Am Heart J. 2014;167(4):585–92.

    Article  Google Scholar 

  7. Mohr FW, Falk V, Diegeler A, Walther T, Gummert JF, Bucerius J, et al. Computer-enhanced “robotic” cardiac surgery: experience in 148 patients. J Thorac Cardiovasc Surg. 2001;121(5):842–53.

    Article  CAS  Google Scholar 

  8. Argenziano M, Katz M, Bonatti J, Srivastava S, Murphy D, Poirier R, et al. Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting. Ann Thorac Surg. 2006;81(5):1666–75.

    Article  Google Scholar 

  9. Bonaros N, Schachner T, Lehr E, Kofler M, Wiedemann D, Hong P, et al. Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: predictors of success and safety. Ann Thorac Surg. 2013;95(3):803–12.

    Article  Google Scholar 

  10. Bonatti J, Schachner T, Bonaros N, Öhlinger A, Danzmayr M, Jonetzko P, et al. Technical challenges in totally endoscopic robotic coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2006;131(1):146–53.

    Article  CAS  Google Scholar 

  11. Bonaros N, Schachner T, Wiedemann D, Oehlinger A, Ruetzler E, Feuchtner G, et al. Quality of life improvement after robotically assisted coronary artery bypass grafting. Cardiology. 2009;114(1):59–66.

    Article  Google Scholar 

  12. Kiaii B, McClure RS, Stewart P, Rayman R, Swinamer SA, Suematsu Y, et al. Simultaneous integrated coronary artery revascularization with long-term angiographic follow-up. J Thorac Cardiovasc Surg. 2008;136(3):702–8.

    Article  Google Scholar 

  13. Gao C, Yang M, Wu Y, Wang G, Xiao C, Liu H, et al. Hybrid coronary revascularization by endoscopic robotic coronary artery bypass grafting on beating heart and stent placement. Ann Thorac Surg. 2009;87(3):737–41.

    Article  Google Scholar 

  14. Reicher B, Poston RS, Mehra MR, Joshi A, Odonkor P, Kon Z, et al. Simultaneous “hybrid” percutaneous coronary intervention and minimally invasive surgical bypass grafting: feasibility, safety, and clinical outcomes. Am Heart J. 2008;155(4):661–7.

    Article  Google Scholar 

  15. Kon ZN, Brown EN, Tran R, Joshi A, Reicher B, Grant MC, et al. Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass. J Thorac Cardiovasc Surg. 2008;135(2):367–75.

    Article  Google Scholar 

  16. Halkos ME, Vassiliades TA, Douglas JS, Morris DC, Rab ST, Liberman HA, et al. Hybrid coronary revascularization versus off-pump coronary artery bypass grafting for the treatment of multivessel coronary artery disease. Ann Thorac Surg. 2011;92(5):1695–701;discussion 1701–2.

    Google Scholar 

  17. Falk V, Autschbach R, Krakor R, Walther T, Diegeler A, Onnasch JF, et al. Computer-enhanced mitral valve surgery: toward a total endoscopic procedure. Semin Thorac Cardiovasc Surg. 1999;11(3):244–9.

    Article  CAS  Google Scholar 

  18. Murphy DA, Miller JS, Langford DA, Snyder AB. Endoscopic robotic mitral valve surgery. J Thorac Cardiovasc Surg. 2006;132(4):776–81.

    Article  Google Scholar 

  19. Nifong LW, Rodriguez E, Chitwood WR. 540 consecutive robotic mitral valve repairs including concomitant atrial fibrillation cryoablation. Ann Thorac Surg. 2012;94(1):38–42;discussion 43.

    Google Scholar 

  20. Suri RM, Burkhart HM, Daly RC, Dearani JA, Park SJ, Sundt TM, et al. Robotic mitral valve repair for all prolapse subsets using techniques identical to open valvuloplasty: establishing the benchmark against which percutaneous interventions should be judged. J Thorac Cardiovasc Surg. 2011;142(5):970–9.

    Article  Google Scholar 

  21. Mihaljevic T, Pattakos G, Gillinov AM, Bajwa G, Planinc M, Williams SJ, et al. Robotic posterior mitral leaflet repair: neochordal versus resectional techniques. Ann Thorac Surg. 2013;95(3):787–94.

    Article  Google Scholar 

  22. Rodriguez E, Cook RC, Chu MWA, Chitwood Jr WR. Minimally invasive bi-atrial cryomaze operation for atrial fibrillation. Oper Tech Thorac Cardiovasc Surg. 2009;14(3):208–23.

    Article  Google Scholar 

  23. Bonaros N, Schachner T, Oehlinger A, Ruetzler E, Kolbitsch C, Dichtl W, et al. Robotically assisted totally endoscopic atrial septal defect repair: insights from operative times, learning curves, and clinical outcome. Ann Thorac Surg. 2006;82(2):687–93.

    Article  Google Scholar 

  24. Kamath GS, Balaram S, Choi A, Kuteyeva O, Garikipati NV, Steinberg JS, et al. Long-term outcome of leads and patients following robotic epicardial left ventricular lead placement for cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2011;34(2):235–40.

    Article  Google Scholar 

  25. Murphy DA, Miller JS, Langford DA. Robot-assisted endoscopic excision of left atrial myxomas. J Thorac Cardiovasc Surg. 2005;130(2):596–7.

    Article  Google Scholar 

  26. Moss E, Halkos ME, Miller JS, Murphy DA. Comparison of endoscopic robotic versus sternotomy approach for the resection of left atrial tumors. Innovations (Phila). 2016;11(4):274–7.

    Article  Google Scholar 

  27. Suematsu Y, Mora BN, Mihaljevic T, del Nido PJ. Totally endoscopic robotic-assisted repair of patent ductus arteriosus and vascular ring in children. Ann Thorac Surg. 2005;80(6):2309–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Halkos M.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Moss, E., Halkos, M.E. (2018). Robotic-Assisted Cardiac Surgery. In: Patel, A.D., Oleynikov, D. (eds) The SAGES Manual of Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-51362-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51362-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51360-7

  • Online ISBN: 978-3-319-51362-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics