Skip to main content

On Co-polynomials on the Real Line and the Unit Circle

  • Chapter
  • First Online:
Operations Research, Engineering, and Cyber Security

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 113))

Abstract

In this paper, we present an overview about algebraic and analytic aspects of orthogonal polynomials on the real line when finite modifications of the coefficients of the three-term recurrence relation they satisfy, the so-called co-polynomials on the real line, are considered. We investigate the behavior of their zeros, mainly interlacing and monotonicity properties. Furthermore, using a transfer matrix approach we obtain new structural relations, combining theoretical and computational advantages. In the case of orthogonal polynomials on the unit circle, we analyze the effects of finite modifications of Verblunsky coefficients on Szegő recurrences. More precisely, we study the structural relations and the corresponding \(\mathcal{C}\)-functions of the orthogonal polynomials with respect to these modifications from the initial ones. By using the Szegő’s transformation we deduce new relations between the recurrence coefficients for orthogonal polynomials on the real line and the Verblunsky parameters of orthogonal polynomials on the unit circle as well as the relation between the corresponding \(\mathcal{S}\)-functions and \(\mathcal{C}\)-functions is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wolfram Mathematica is a registered trademark of Wolfram Research, Inc.

References

  1. V.M. Badkov, Systems of orthogonal polynomials explicitly represented by the Jacobi polynomials. Math. Notes 42, 858–863 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Borwein, T. Erdelyi, Polynomials and Polynomial Inequalities (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  3. K. Castillo, On perturbed Szegő recurrences. J. Math. Anal. Appl. 411, 742–752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Castillo, Monotonicity of zeros for a class of polynomials including hypergeometric polynomials. Appl. Math. Comput. 266, 173–193 (2015)

    Article  MathSciNet  Google Scholar 

  5. K. Castillo, F. Marcellán, J. Rivero, On co-polynomials on the real line. J. Math. Anal. Appl. 427, 469–483 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Castillo, F. Marcellán, J. Rivero, On perturbed orthogonal polynomials on the real line and the unit circle via Szegő’s transformation. Appl. Math. Comput. (2017, Accepted for publication)

    Google Scholar 

  7. T.S. Chihara, On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  8. T.S. Chihara, An introduction to orthogonal polynomials, in Mathematics and Its Applications, vol. 13 (Gordon and Breach, New York/London/Paris, 1978)

    Google Scholar 

  9. M.N. de Jesus, J. Petronilho, On orthogonal polynomials obtained via polynomial mappings. J. Approx. Theory 162, 2243–2277 (2010)

    Google Scholar 

  10. J. Dini, P. Maroni, A. Ronveaux, Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux. Portugal. Math. 46, 269–282 (1989)

    MathSciNet  MATH  Google Scholar 

  11. W. Erb, Optimally space localized polynomials with applications in signal processing. J. Fourier Anal. Appl. 18 (1), 45–66 (2012)

    Google Scholar 

  12. W. Erb, Accelerated Landweber methods based on co-dilated orthogonal polynomials. Numer. Algorithms 68, 229–260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y.L. Geronimus, On some difference equations and corresponding systems of orthogonal polynomials. Izv. Akad. Nauk SSSR, Ser. Mat. 5, 203–210 (1943)

    Google Scholar 

  14. Y.L. Geronimus, Orthogonal Polynomials: Estimates, Asymptotic Formulas and Series of Polynomials Orthogonal on the Unit Circle and on an Interval (Consultants Bureau, New York, 1961)

    MATH  Google Scholar 

  15. Y.L. Geronimus, Orthogonal polynomials on a circle and their applications. Am. Math. Soc. Translat. Ser. 1 3, 1–78 (1962)

    Google Scholar 

  16. L. Golinskii, P. Nevai, Szegő difference equations, transfer matrices and orthogonal polynomials on the unit circle. Commun. Math. Phys. 223, 223–259 (2001)

    Article  MATH  Google Scholar 

  17. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia in Mathematics and its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  18. M. Ismail, X. Li, On sieved orthogonal polynomials IX: orthogonality on the unit circle. Pac. J. Math. 152, 289–297 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. C.G.J. Jacobi, Über die reduction der quadrastischen formen auf die kleinste anzahl glieder. J. Reine Angew. Math. 39, 290–292 (1848)

    Google Scholar 

  20. J. Letessier, Some results on co-recursive associated Laguerre and Jacobi polynomials. SIAM J. Math. Anal. 25 (2), 528–548 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.G. Lorentz, M.V. Gollitschek, Y. Makovoz, Constructive Approximation (Springer, New York, 1996)

    Book  Google Scholar 

  22. F. Marcellán, G. Sansigre, Orthogonal polynomials on the unit circle: symmetrization and quadratic decomposition. J. Approx. Theory 65, 109–119 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Marcellán, J.S. Dehesa, A. Ronveaux, On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 30, 203–212 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. L.M. Milne-Thomson, The Calculus of Finite Differences. American Mathematical Society (Chelsea Publishing, Providence, 2000)

    MATH  Google Scholar 

  25. G.V. Milovanovic, M.Th. Rassias (eds.), Analytic Number Theory, Approximation Theory and Special Functions (Springer, New York, 2014)

    MATH  Google Scholar 

  26. F. Peherstorfer, Finite perturbations of orthogonal polynomials. J. Comput. Appl. Math. 44, 275–302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials. Constr. Approx. 12, 161–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Petronilho, Orthogonal polynomials on the unit circle via a polynomial mapping on the real line. J. Comput. Appl. Math. 216, 98–127 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Ronveaux, Fourth-order differential equations for numerator polynomials. J. Phys. A Math. Gen. 21 (15), L749 (1988)

    Google Scholar 

  30. A. Ronveaux, F. Marcellán, Co-recursive orthogonal polynomials and fourth-order differential equation. J. Comput. Appl. Math. 25 (1), 105–109 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Ronveaux, S. Belmehdi, J. Dini, P. Maroni, Fourth-order differential equation for the co-modified of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 29 (2), 225–231 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Simon, Orthogonal polynomials on the unit circle, Part 1: Classical theory. Colloquium Publications Series, vol. 54 (American Mathematical Society, Providence, 2005)

    Google Scholar 

  33. B. Simon, Orthogonal polynomials on the unit circle, Part 2: Spectral theory. Colloquium Publications Series, vol. 54 (American Mathematical Society, Providence, 2005)

    Google Scholar 

  34. B. Simon, Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  35. H.A. Slim, On co-recursive orthogonal polynomials and their application to potential scattering. J. Math. Anal. Appl. 136, 1–19 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Szegő, Orthogonal Polynomials, 4th edn. Colloquium Publications Series, vol. 23 (American Mathematical Society, Providence, 1975)

    Google Scholar 

  37. A. Zhedanov, Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–86 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to Th. M. Rassias and N. J. Daras for the invitation to participate in this volume. The research of the first author is supported by the Portuguese Government through the FCT under the grant SFRH/BPD/101139/2014 and partially supported by the Brazilian Government through the CNPq under the project 470019/2013-1. The research of the first and second author is supported by Dirección General de Investigación Científica y Técnica, Ministerio de Economía y Competitividad of Spain, grant MTM2012-36732-C03-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Rivero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castillo, K., Marcellán, F., Rivero, J. (2017). On Co-polynomials on the Real Line and the Unit Circle. In: Daras, N., Rassias, T. (eds) Operations Research, Engineering, and Cyber Security. Springer Optimization and Its Applications, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-51500-7_4

Download citation

Publish with us

Policies and ethics