Skip to main content

A Hyperjerk Memristive System with Hidden Attractors

  • Chapter
  • First Online:
Advances in Memristors, Memristive Devices and Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 701))

Abstract

After the introduction by Leonov and Kuznetsov of a new classification of nonlinear dynamics with kinds of attractors (self-excited attractors and hidden attractors), this subject has received a significant interest. From an engineering point of view, hidden attractors are important and can lead to unexpected behavior. Various chaotic systems with the presence of hidden attractors have been discovered recently. Especially, memristor, the fourth basic circuit element, can be used to construct such chaotic systems. This chapter presents a new memristive system which can display hidden chaotic attractor. Interestingly, this memristive system is a hyperjerk system because it involves time derivatives of a jerk function. The fundamental dynamics properties of such memristive system are discovered by calculating the number of equilibrium points, using phase portraits, Poincaré map, bifurcation diagram, maximum Lyapunov exponents, and Kaplan–Yorke fractional dimension. Also, we have investigated the multi–stability in the memristive system by varying the value of its initial condition. In addition, adaptive synchronization for the hyperjerk memristive system is also studied. The proposed memristive system can be applied into chaos–based engineering applications because of its chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79, 573–579.

    Article  MathSciNet  MATH  Google Scholar 

  • Azar, A. T., & Vaidyanathan, S. (2015a). Chaos modeling and control systems design. New York: Springer.

    Book  MATH  Google Scholar 

  • Azar, A. T., & Vaidyanathan, S. (2015b). Computational intelligence applications in modeling and control. New York: Springer.

    Book  Google Scholar 

  • Bao, B., Zou, X., Liu, Z., & Hu, F. (2013). Generalized memory element and chaotic memory system. International Journal of Bifurcation and Chaos, 23, 1350135–12.

    Google Scholar 

  • Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Buscarino, A., Fortuna, L., & Frasca, M. (2009). Experimental robust synchronization of hyperchaotic circuits. Physica D, 238, 1917–1922.

    Article  MATH  Google Scholar 

  • Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L. V., & Sciuto, G. (2012). Memristive chaotic circuits based on cellular nonlinear networks. International Journal of Bifurcation and Chaos, 22, 1250070-1–13.

    Google Scholar 

  • Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9, 1465–1466.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, G., & Yu, X. (2003). Chaos control: Theory and applications. Berlin: Springer.

    Google Scholar 

  • Chlouverakis, K. E., & Sprott, J. C. (2006). Chaotic hyperjerk systems. Chaos, Solitons Fractals, 28, 739–746.

    Article  MathSciNet  MATH  Google Scholar 

  • Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.

    Article  Google Scholar 

  • Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics A, 102(4), 765–783.

    Article  MATH  Google Scholar 

  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and system. Proceedings of the IEEE, 64, 209–223.

    Article  MathSciNet  Google Scholar 

  • Driscoll, T., Pershin, Y. V., Basov, D. N., & Ventra, M. D. (2011). Chaotic memristor. Applied Physics A, 102, 885–889.

    Article  Google Scholar 

  • Driscoll, T., Quinn, J., Klien, S., Kim, H. T., Kim, B. J., Pershin, Y. V., et al. (2010). Memristive adaptive filters. Applied Physics Letters, 97, 093502.

    Article  Google Scholar 

  • Eichhorn, R., Linz, S. J., & Hanggi, P. (2002). Simple polynomial classes of chaotic jerky dynamics. Chaos Solitons Fractals, 13, 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Elhadj, Z., & Sprott, J. C. (2013). Transformation of 4-D dynamical systems to hyperjerk form. Palestine Journal of Mathematics, 2, 38–45.

    MathSciNet  MATH  Google Scholar 

  • Fortuna, L., & Frasca, M. (2007). Experimental synchronization of single-transistor-based chaotic circuits. Chaos, 17, 043118-1–5.

    Article  MATH  Google Scholar 

  • Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R., & Garcia-Guerrero, E. E. (2009). Synchronization of chua’s circuits with multi-scroll attractors: Application to communication. Communications in Nonlinear Science and Numerical Simulation, 14, 2765–2775.

    Article  Google Scholar 

  • Huang, Y., Wang, Y., Chen, H., & Zhang, S. (2016). Shape synchronization control for three-dimensional chaotic systems. Chaos, Solitons & Fractals, 87, 136–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Itoh, M., & Chua, L. O. (2008). Memristor oscillators. International Journal of Bifurcation and Chaos, 18, 3183–3206.

    Article  MathSciNet  MATH  Google Scholar 

  • Itoh, M., & Chua, L. O. (2009). Memristor cellular automata and memristor discrete time cellular neural networks. International Journal of Bifurcation and Chaos, 19, 3605–3656.

    Article  MATH  Google Scholar 

  • Iu, H. H. C., Yu, D. S., Fitch, A. L., Sreeram, V., & Chen, H. (2011). Controlling chaos in a memristor based circuit using a twin-T notch filter. IEEE Transactions on Circuits and Systems I, Regular Paper, 58, 1337–1344.

    Article  MathSciNet  Google Scholar 

  • Jafari, S., & Sprott, J. C. (2013). Simple chaotic flows with a line equilibrium. Chaos, Solitons Fractals, 57, 79–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Jafari, S., Sprott, J. C., & Golpayegani, S. M. R. H. (2013). Elementary quadratic flows with no equilibria. Physics Letters A, 377:699–702.

    Google Scholar 

  • Kajbaf, A., Akhaee, M. A., & Sheikhan, M. (2016). Fast synchronization of non-identical chaotic modulation-based secure systems using a modified sliding mode controller. Chaos, Solitons & Fractals, 84, 49–57.

    Article  MATH  Google Scholar 

  • Kapitaniak, T. (1994). Synchronization of chaos using continuous control. Physical Review E, 50, 1642–1644.

    Article  Google Scholar 

  • Karthikeyan, R., & Vaidyanathan, S. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65, 97–103.

    Article  Google Scholar 

  • Kengne, J., Njitacke, Z. T., & Fotsin, H. (2016). Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dynamics, 83, 751–765.

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil, H. (2002). Nonlinear systems. New Jersey, USA: Prentice Hall.

    MATH  Google Scholar 

  • Kingni, S. T., Jafari, S., Simo, H., & Woafo, P. (2014). Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. The European Physical Journal Plus, 129, 76.

    Article  Google Scholar 

  • Lainscsek, C., Lettellier, C., & Gorodnitsky, I. (2003). Global modeling of the rössler system from the z-variable. Physics Letters A, 314, 409–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., & Kuznetsov, N. V. (2011). Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics, 84, 475–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., & Kuznetsov, N. V. (2013). Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos, 23, 1330002.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., Kiseleva, M. A., Solovyeva, E. P., & Zaretskiy, A. M. (2014). Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dynamics, 77, 277–288.

    Article  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., Kuznetsova, O. A., Seldedzhi, S. M., & Vagaitsev, V. I. (2011a). Hidden oscillations in dynamical systems. Transactions on Systems and Control, 6, 54–67.

    Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2011b). Localization of hidden Chua’s attractors. Physics Letters A, 375, 2230–2233.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2012). Hidden attractor in smooth Chua system. Physica D, 241, 1482–1486.

    Article  MathSciNet  MATH  Google Scholar 

  • Linz, S. J. (1997). Nonlinear dynamical models and jerky motion. American Journal of Physics, 65, 523–526.

    Article  Google Scholar 

  • Liu, C., Yi, J., Xi, X., An, L., & Fu, Y. (2012). Research on the multi-scroll chaos generation based on Jerk mode. Procedia Engineering, 29, 957–961.

    Article  Google Scholar 

  • Lorenz, E. N. (1963). Deterministic non-periodic flow. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  Google Scholar 

  • Louodop, P., Kountchou, M., Fotsin, H., & Bowong, S. (2014). Practical finite-time synchronization of jerk systems: Theory and experiment. Nonlinear Dynamics, 78, 597–607.

    Article  MathSciNet  MATH  Google Scholar 

  • Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12, 659–661.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, J., Wu, X., Chu, R., & Zhang, L. (2014). Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dynamics, 76, 1951–1962.

    Article  Google Scholar 

  • Malasoma, J. M. (2000). What is the simplest dissipative chaotic jerk equation which is parity invariant. Physics Letters A, 264, 383–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Molaei, M., Jafari, S., Sprott, J. C., & Golpayegani, S. (2013). Simple chaotic flows with one stable equilibrium. International Journal of Bifurcation and Chaos, 23, 1350188.

    Article  MathSciNet  MATH  Google Scholar 

  • Munmuangsaen, B., Srisuchinwong, B., & Sprott, J. C. (2011). Generalization of the simplest autonomous chaotic system. Physics Letters A, 375, 1445–1450.

    Article  MATH  Google Scholar 

  • Muthuswamy, B. (2010). Implementing memristor based chaotic circuits. International Journal of Bifurcation and Chaos, 20, 1335–1350.

    Article  MATH  Google Scholar 

  • Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuits. Journal of Bifurcation and Chaos, 20, 1567–1580.

    Article  Google Scholar 

  • Muthuswamy, B., & Kokate, P. P. (2009). Memristor-based chaotic circuits. IETE Technical Review, 26, 415–426.

    Article  Google Scholar 

  • Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic signals. Physical Review A, 64, 821–824.

    MATH  Google Scholar 

  • Pehlivan, I., Moroz, I., & Vaidyanathan, S. (2014). Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333, 5077–5096.

    Article  Google Scholar 

  • Pershin, Y. V., Fontaine, S. L., & Ventra, M. D. (2009). Memristive model of amoeba learning. Physical Review E, 80, 021926.

    Article  Google Scholar 

  • Pham, V. T., Rahma, F., Frasca, M., & Fortuna, L. (2014a). Dynamics and synchronization of a novel hyperchaotic system without equilibrium. International Journal of Bifurcation and Chaos, 24, 1450087–11.

    Google Scholar 

  • Pham, V.-T., Volos, C., Jafari, S., Wang, X., & Vaidyanathan, S. (2014b). Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectronics and Advanced Materials, Rapid Communications, 8, 1157–1163.

    Google Scholar 

  • Rasappan, S., & Vaidyanathan, S. (2014). Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal, 54, 293–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57, 397–398.

    Article  Google Scholar 

  • Sastry, S. (1999). Nonlinear systems: Analysis, stability, and control. USA: Springer.

    Book  MATH  Google Scholar 

  • Schot, S. (1978). Jerk: The time rate of change of acceleration. American Journal of Physics, 46, 1090–1094.

    Article  Google Scholar 

  • Shin, S., Kim, K., & Kang, S. M. (2011). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 410, 266–274.

    Article  Google Scholar 

  • Sprott, J. C. (1997). Some simple chaotic jerk functions. American Journal of Physics, 65, 537–543.

    Article  Google Scholar 

  • Sprott, J. C. (2003). Chaos and times-series analysis. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Sprott, J. C. (2010). Elegant chaos: Algebraically simple chaotic flows. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Sprott, J. C. (2011). A new chaotic jerk circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 58, 240–243.

    Article  Google Scholar 

  • Srinivasan, K., Senthilkumar, D. V., Murali, K., Lakshmanan, M., & Kurths, J. (2011). Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos, 21, 023119.

    Article  MATH  Google Scholar 

  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to Physics, Biology, Chemistry, and Engineering. Massachusetts: Perseus Books.

    MATH  Google Scholar 

  • Sun, K. H., & Sprott, J. C. (2009). A simple jerk system with piecewise exponential nonlinearity. International Journal of Nonlinear Sciences and Numerical Simulation, 10, 1443–1450.

    Article  Google Scholar 

  • Tetzlaff, R. (2014). Memristor and memristive systems. New York: Springer.

    Book  Google Scholar 

  • Vaidyanathan, S. (2012). Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automation and Computing, 9, 274–279.

    Article  Google Scholar 

  • Vaidyanathan, S. (2013). A new six-term 3-D chaotic system with an exponential nonlineariry. Far East Journal of Mathematical Sciences, 79, 135–143.

    MATH  Google Scholar 

  • Vaidyanathan, S. (2014). Analysis and adaptive synchronization of eight-term novel 3-D chaotic system with three quadratic nonlinearities. European Physical Journal Special Topics, 223, 1519–1529.

    Article  Google Scholar 

  • Vaidyanathan, S., Volos, C., Pham, V. T., & Madhavan, K. (2015). Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Archives of Control Sciences, 25, 135–158.

    MathSciNet  Google Scholar 

  • Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowo, B. A. (2014). Adaptive backstepping control, synchronization and circuit simualtion of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 33, 257–285.

    MATH  Google Scholar 

  • Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2011). Various synchronization phenomena in bidirectionally coupled double scroll circuits. Communications in Nonlinear Science and Numerical Simulation, 71, 3356–3366.

    Article  MathSciNet  MATH  Google Scholar 

  • Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93, 1328–1340.

    Article  Google Scholar 

  • Wang, X., & Chen, G. (2012). A chaotic system with only one stable equilibrium. Communications in Nonlinear Science and Numerical Simulation, 17, 1264–1272.

    Article  MathSciNet  Google Scholar 

  • Wang, X., & Chen, G. (2013). Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics, 71, 429–436.

    Article  MathSciNet  Google Scholar 

  • Wang, Z., Sun, W., Wei, Z., & Zhang, S. (2015). Dynamical and delayed feedbacl control for a 3D jerk system with hidden attractor. Nonlinear Dynamics, 82, 577–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Yalcin, M. E., & Ozoguz, S. (2007). n-scroll chaotic attractors from a first-order time-delay differential equation. Chaos, 17, 033112-1–8.

    Article  MATH  Google Scholar 

  • Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2005). Cellular neural networks, multi-scroll chaos and synchronization. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Yu, S., Lü, J., Leung, H., & Chen, G. (2005). Design and implementation of n-scroll chaotic attractors from a general Jerk circuit. IEEE Transactions on Circuits and Systems I, 52, 1459–1476.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Xiong Wang was supported by the National Natural Science Foundation of China (No. 61601306) and Shenzhen Overseas High Level Talent Peacock Project Fund (No. 20150215145C). V.-T. Pham is grateful to Le Thi Van Thu, Philips Electronics—Vietnam, for her help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pham, VT., Vaidyanathan, S., Volos, C., Wang, X., Hoang, D.V. (2017). A Hyperjerk Memristive System with Hidden Attractors. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics