Skip to main content

Error Analysis of Nodal Meshless Methods

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VIII

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 115))

Abstract

There are many application papers that solve elliptic boundary value problems by meshless methods, and they use various forms of generalized stiffness matrices that approximate derivatives of functions from values at scattered nodes \(x_{1},\ldots,x_{M} \in \Omega \subset \mathbb{R}^{d}\). If u is the true solution in some Sobolev space S allowing enough smoothness for the problem in question, and if the calculated approximate values at the nodes are denoted by \(\tilde{u}_{1},\ldots,\tilde{u}_{M}\), the canonical form of error bounds is

$$\displaystyle{\max _{1\leq j\leq M}\vert u^{{\ast}}(x_{ j}) -\tilde{ u}_{j}\vert \leq \epsilon \| u^{{\ast}}\|_{ S}}$$

where ε depends crucially on the problem and the discretization, but not on the solution. This contribution shows how to calculate such ε numerically and explicitly, for any sort of discretization of strong problems via nodal values, may the discretization use Moving Least Squares, unsymmetric or symmetric RBF collocation, or localized RBF or polynomial stencils. This allows users to compare different discretizations with respect to error bounds of the above form, without knowing exact solutions, and admitting all possible ways to set up generalized stiffness matrices. The error analysis is proven to be sharp under mild additional assumptions. As a byproduct, it allows to construct worst cases that push discretizations to their limits. All of this is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Aboiyar, E.H. Georgoulis, A. Iske, Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction. SIAM J. Sci. Comput. 32, 3251–3277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.G. Armentano, Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal. 39 (1), 38–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.G. Armentano, R.G. Durán, Error estimates for moving least square approximations. Appl. Numer. Math. 37, 397–416 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.N. Atluri, T.-L. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Belytschko, Y. Krongauz, D.J. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. Spec. Issue 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  6. D. Braess, Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  7. O. Davydov, R. Schaback, Error bounds for kernel-based numerical differentiation. Numer. Math. 132, 243–269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Davydov, R. Schaback, Optimal stencils in Sobolev spaces, preprint 2016

    Google Scholar 

  9. J. Duchon, Splines minimizing rotation-invariate semi-norms in Sobolev spaces, in Constructive Theory of Functions of Several Variables, ed. by W. Schempp, K. Zeller (Springer, Berlin/Heidelberg, 1979), pp. 85–100

    Google Scholar 

  10. G. Fasshauer, Solving partial differential equations by collocation with radial basis functions, in Surface Fitting and Multiresolution Methods, ed. by A. LeMéhauté, C. Rabut, L.L. Schumaker (Vanderbilt University Press, Nashville, 1997), pp. 131–138

    Google Scholar 

  11. N. Flyer, E. Lehto, S. Blaise, G.B. Wright, A. St.-Cyr, A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere, preprint 2015

    Google Scholar 

  12. C. Franke, R. Schaback, Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Franke, R. Schaback, Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–82 (1998)

    MathSciNet  MATH  Google Scholar 

  14. T. Hangelbroek, F.J. Narcowich, C. Rieger, J.D. Ward, An inverse theorem for compact Lipschitz regions using localized kernel bases, arXiv preprint arXiv:1508.02952v2 (2015)

    Google Scholar 

  15. Y.C. Hon, R. Schaback, On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001); MR MR1823674

    Google Scholar 

  16. A. Iske, On the approximation order and numerical stability of local Lagrange interpolation by polyharmonic splines, in Modern Developments in Multivariate Approximation (Birkhäuser, Basel, 2003), pp. 153–165

    MATH  Google Scholar 

  17. E.J. Kansa, Application of Hardy’s multiquadric interpolation to hydrodynamics, in Proceedings of the 1986 Summer Computer Simulation Conference, vol. 4, pp. 111–117 (1986)

    Google Scholar 

  18. D.W. Kim, Y. Kim, Point collocation methods using the fast moving least-square reproducing kernel approximation. Int. J. Numer. Methods Eng. 56, 1445–1464 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Larsson, E. Lehto, A. Heryodono, B. Fornberg, Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35, A2096–A2119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. O.V. Matveev, Spline interpolation of functions of several variables and bases in Sobolev spaces. Trudy Mat. Inst. Steklov 198, 125–152 (1992)

    MATH  Google Scholar 

  21. D. Mirzaei, R. Schaback, Direct Meshless Local Petrov-Galerkin (DMLPG) method: a generalized MLS approximation. Appl. Numer. Math. 68, 73–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Mirzaei, R. Schaback, M. Dehghan, On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32 (3), 983–1000 (2012). doi:10.1093/imanum/drr030

    Article  MathSciNet  MATH  Google Scholar 

  23. A.R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equations (Wiley, Chichester, 1980), p. 233

    MATH  Google Scholar 

  24. B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MATH  Google Scholar 

  25. C. Rabut, Elementary M-harmonic cardinal B-splines. Numer. Algorithms 2, 39–62 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Šarler, From global to local radial basis function collocation method for transport phenomena, in Advances in Meshfree Techniques. Computational Methods in Applied Sciences, vol. 5 (Springer, Dordrecht, 2007), pp. 257–282; MR 2433133 (2009i:65232)

    Google Scholar 

  27. R. Schaback, Greedy sparse linear approximations of functionals from nodal data. Numer. Algorithms 67, 531–547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Schaback, A computational tool for comparing all linear PDE solvers. Adv. Comput. Math. 41, 333–355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Schaback, All well–posed problems have uniformly stable and convergent discretizations. Numer. Math. 132, 243–269 (2015)

    MathSciNet  Google Scholar 

  30. R. Schaback, H. Wendland, Using compactly supported radial basis functions to solve partial differential equations, in Boundary Element Technology XIII, ed. by C.S. Chen, C.A. Brebbia, D.W. Pepper (WIT Press, Southampton/Boston, 1999), pp. 311–324

    Google Scholar 

  31. A.I. Tolstykh, On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33, 68–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Wendland, Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  34. G.B. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212 (1), 99–123 (2006); MR MR2183606 (2006j:65320)

    Google Scholar 

  35. G.M. Yao, S. ul Islam, B. Šarler, A comparative study of global and local meshless methods for diffusion-reaction equation. CMES Comput. Model. Eng. Sci. 59 (2), 127–154 (2010); MR 2680809

    Google Scholar 

  36. G.M. Yao, B. Šarler, C.S. Chen, A comparison of three explicit local meshless methods using radial basis functions. Eng. Anal. Bound. Elem. 35 (3), 600–609 (2011); MR 2753822 (2012b:65150)

    Google Scholar 

Download references

Acknowledgements

This work was strongly influenced by helpful discussions and e-mails with Oleg Davydov and Davoud Mirzaei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schaback .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schaback, R. (2017). Error Analysis of Nodal Meshless Methods. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VIII . Lecture Notes in Computational Science and Engineering, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-51954-8_7

Download citation

Publish with us

Policies and ethics