Skip to main content

Bifunctional Nanomaterials: Magnetism, Luminescence and Multimodal Biomedical Applications

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

Bifunctional nanosized materials, coassembling magnetic and photonic features into single-entity nanostructures with cooperatively enhanced performances, are remarkable because of their potential multimodal biomedical applications, for example, as drug delivery carriers, MRI contrast agents, and magnetic hyperthermia for cancer therapy. Therefore, extensive research work has been conducted over the last decade to study the magnetic and luminescent properties as well as biomedical applications of bifunctional nanostructures based on magnetic nanoparticles and trivalent rare-earth ions. Another area of great research interest is magnetic and photonic nanomaterials containing magnetic nanoparticles functionalized with quantum dots, fluorescent dyes, and luminescent complexes. The aim of this chapter is to present a concise overview of the key concepts of various strategies to fabricate bifunctional nanomaterials, as well as their magnetism and luminescence behaviors. In keeping with the title of the book, the content of the chapter is presented in an efficient way to facilitate understanding by nonspecialized readers. Finally, the manuscript contains a section on multimodal biomedical applications of magnetic and luminescent nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Acrylic acid

AC:

Alternating current

Acac:

Acetylacetone

B.M.:

Bohr magneton

Calix:

Calixarene

CNT:

Carbon nanotube

CPE:

Carbon-paste electrode

CS:

Chitosan

CT:

Computed tomography

CTAB:

Cetyltrimethyl-ammonium bromide

Cup:

N-nitrosophenylhydroxylamine

DNA:

Deoxyribonucleic acid

DTAB:

Dodecyltrimethylammonium bromide

FI:

Fluorescent imaging

FITC:

Fluorescein isothiocyanate

GO:

Graphene oxide

IgG:

Immunoglobulin G

IUPAC:

International Union of Pure and Applied Chemistry

IVCT:

Intervalence charge transfer

LBL:

Layer-by-layer

mcDNA:

Minicircle DNA

MNPs:

Magnetic nanoparticles

MRI:

Magnetic resonance imaging

MRT:

Magnetic resonance tomography

MTT:

Microculture tetrazolium assay

MWCNT:

Multiwalled carbon nanotube

NADH:

Nicotinamide adenine dinucleotide

NIR:

Near-infrared

NIPAM:

N-isopropylacrylamide

OA:

Oleic acid

o/w:

Oil dispersed in water

PAH:

Poly(allylamine hydrochloride)

PCEM:

Point charge electrostatic model

PCL:

Poly(ε-caprolactone)

PEG:

Polyethylene glycol

PET:

Positron emission tomography

Phen:

1,10-phenanthroline

PLGA:

Poly(lactic-co-glycolic acid)

PMAA:

Poly(methacrylic acid)

PMI:

N-(2,6-diisopropylphenyl)-perylene-3,4-dicarbonacidimide

PS:

Polystyrene

PSS:

Poly(styrenesulfonate)

PVP:

Poly(vinylpyrrolidone)

QD:

Quantum dot

rGO:

Reduced graphene oxide

SAR:

Specific absorption rate

siRNA:

Small interfering RNA

SLPC:

Specific losses per cycle

SPECT:

Single-photon emission computed tomography

St:

Styrene

TEOS:

Tetraethyl orthosilicate

UCNPs:

Upconversion luminescent nanoparticles

w/o:

Water dispersed in oil

References

  1. Khan LU, Brito HF, Hölsä J, Pirota KR, Muraca D, Felinto MCFC, Teotonio EES, Malta OL (2014) Red-green emitting and superparamagnetic nanomarkers containing Fe3O4 functionalized with calixarene and rare earth complexes. Inorg Chem 53:12902–12910

    Article  Google Scholar 

  2. Li X, Zhao D, Zhang F (2013) Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications. Theranostics 3:292–305; Khan LU, Muraca D, Brito HF, Pirota KR, Felinto MCFC, Teotonio EES, Malta OL (2016) Optical and magnetic nanocomposites containing Fe3O4@SiO2 grafted with Eu3+ and Tb3+complexes. J Alloys Compd 686:453–466

    Google Scholar 

  3. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12:61–67

    Article  Google Scholar 

  4. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S-T, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chemie Int Ed 50:7385–7390

    Article  Google Scholar 

  5. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee S-T, Liu Z (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33:2215–2222

    Article  Google Scholar 

  6. Son A, Dhirapong A, Dosev DK, Kennedy IM, Weiss RH, Hristova KR (2008) Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Anal Bioanal Chem 390:1829–1835

    Article  Google Scholar 

  7. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436–2446

    Article  Google Scholar 

  8. Shi D, Sadat ME, Dunn AW, Mast DB (2015) Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7:8209–8232

    Article  Google Scholar 

  9. Singh LP, Srivastava SK, Mishra R, Ningthoujam RS (2014) Multifunctional hybrid nanomaterials from water dispersible CaF2:Eu3+,Mn2+ and Fe3O4 for luminescence and hyperthermia application. J Phys Chem C 118:18087–18096

    Article  Google Scholar 

  10. Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166–1172

    Article  Google Scholar 

  11. Kim H, Achermann M, Balet LP, Hollingsworth JA, Klimov VI (2005) Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc 127:544–546

    Article  Google Scholar 

  12. Kaewsaneha C, Tangboriboonrat P, Polpanich D, Elaissari A (2015) Multifunctional fluorescent-magnetic polymeric colloidal particles: preparations and bioanalytical applications. ACS Appl Mater Interfaces 7:23373–23386

    Article  Google Scholar 

  13. Lin Y-S, Wu S, Hung Y, Chou Y, Chang C, Lin M, Tsai C, Mou C-Y (2006) Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater 18:5170–5172

    Article  Google Scholar 

  14. Zhang L, Liu B, Dong S (2007) Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material. J Phys Chem B 111:10448–10452

    Article  Google Scholar 

  15. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  16. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018

    Article  Google Scholar 

  17. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  Google Scholar 

  18. Zhang Y, Shi Q, Schliesser J, Woodfield BF, Nan Z (2014) Magnetic and thermodynamic properties of nanosized Zn ferrite with normal spinal structure synthesized using a facile method. Inorg Chem 53:10463–10470

    Article  Google Scholar 

  19. Blanco-Gutiérrez V, Gallastegui JA, Bonville P, Torralvo-Fernández MJ, Sáez-Puche R (2012) MFe2O4 (M: Co2+, Ni2+) nanoparticles: mössbauer and X-ray absorption spectroscopies studies and high-temperature superparamagnetic behavior. J Phys Chem C 116:24331–24339

    Article  Google Scholar 

  20. Jacintho GVM, Brolo AG, Corio P, Suarez PZ, Rubim JC (2009) Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids. J Phys Chem C 113:7684–7691

    Article  Google Scholar 

  21. Kim KJ, Lee HS, Lee MH, Lee SH (2002) Comparative magneto-optical investigation of d–d charge–transfer transitions in Fe3O4, CoFe2O4, and NiFe2O4. J Appl Phys 91:9974

    Article  Google Scholar 

  22. Fontijin WFJ, van der Zang PJ, Devillers MAC, Metselaar R (1997) Optical and magneto-optical Kerr spectra of Fe3O4 and Mg2+-or Al3+-substituted Fe3O4. Phys Rev B 56:5432–5442

    Article  Google Scholar 

  23. Tilley RJD (2010) Colour and the optical properties of materials. Wiley, Chichester

    Book  Google Scholar 

  24. Yu C-J, Wu S-M, Tseng W-L (2013) Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate–BODIPY conjugates: application to adenosine triphosphate and pyrophosphate sensing. Anal Chem 85:8559–8565

    Article  Google Scholar 

  25. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Article  Google Scholar 

  26. Borges AS, Dutra JDL, Freire RO, Moura RT, Da Silva JG, Malta OL, Araujo MH, Brito HF (2012) Synthesis and characterization of the europium(III) pentakis(picrate) complexes with imidazolium counter cations: structural and photoluminescence study. Inorg Chem 51:12867–12878

    Article  Google Scholar 

  27. Bünzli J-CG, Eliseeva SV (2013) Intriguing aspects of lanthanide luminescence. Chem Sci 4:1939–1949

    Article  Google Scholar 

  28. Carnall WT, Goodman GL, Rajnak K, Rana RS (1989) A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J Chem Phys 90:3443–3457

    Article  Google Scholar 

  29. Brito HF, Malta OL, Felinto MCFC, Teotonio EES (2009) Luminescence phenomena involving metal enolates. In: Zabicky J (ed) The chemistry of metal enolates—part 1. Wiley, Chichester, pp 131–184

    Google Scholar 

  30. de Sá GF, Malta OL, de Mello DC et al (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196:165–195

    Article  Google Scholar 

  31. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47

    Article  Google Scholar 

  32. Bünzli JCG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755

    Article  Google Scholar 

  33. Cotton S (2005) Electronic and magnetic properties of the lanthanides. In: Lanthanide and actinide chemistry. Wiley, West Sussex. pp 61–83

    Google Scholar 

  34. Frison R, Cernuto G, Cervellino A et al (2013) Magnetite-maghemite nanoparticles in the 5-15 nm range: correlating the core-shell composition and the surface structure to the magnetic properties. A total scattering study. Chem Mater 25:4820–4827

    Article  Google Scholar 

  35. Piao Y, Kim J et al (2008) Wrap–bake–peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 7:242–247

    Article  Google Scholar 

  36. Prado Y, Daffé N, Michel A et al (2015) Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes. Nat Commun 6:10139

    Article  Google Scholar 

  37. Lacroix L, Lachaize S, Falqui A et al (2009) Iron nanoparticle growth in organic superstructures. J Am Chem Soc 131:549–557

    Article  Google Scholar 

  38. Tadic M, Panjan M, Damnjanovic V, Milosevic I (2014) Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl Surf Sci 320: 183–187

    Article  Google Scholar 

  39. Lu Y, Lu X, Mayers BT et al (2008) Synthesis and characterization of magnetic Co nanoparticles: a comparison study of three different capping surfactants. J Solid State Chem 181:1530–1538

    Article  Google Scholar 

  40. Peng S, Wang C, Xie J, Sun S (2006) Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 128:10676–10677

    Article  Google Scholar 

  41. Huber D (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1: 482–501

    Article  Google Scholar 

  42. Chen HM, Hsin CF, Chen PY et al (2009) Ferromagnetic CoPt3 nanowires: structural evolution from fcc to ordered L12. J Am Chem Soc 131:15794–15801

    Article  Google Scholar 

  43. Colak L, Hadjipanayis GC (2009) Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology 20:485602

    Article  Google Scholar 

  44. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  45. Lu A-H, Salabas E, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chemie Int Ed 46:1222–1244

    Article  Google Scholar 

  46. Hasany F, Ahmed S et al (2013) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2:148–158

    Article  Google Scholar 

  47. Jolivet J-P, Chanèac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–483

    Google Scholar 

  48. Barbosa HP, Kai J, Silva IGN et al (2015) Luminescence investigation of R3+-doped alkaline earth tungstates prepared by a soft chemistry method. J Lumin 170:1–7

    Google Scholar 

  49. Yi G, Lu H, Zhao S et al (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4 :Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett 4:2191–2196

    Article  Google Scholar 

  50. Ximendes EC, Rocha U, Jacinto C et al (2016) Self-monitored photothermal nanoparticles based on core–shell engineering. Nanoscale 8:3057–3066

    Article  Google Scholar 

  51. Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85:7–10

    Article  Google Scholar 

  52. Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90: 14–30

    Article  Google Scholar 

  53. Knobel M, Nunes WC, Socolovsky LM et al (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857

    Google Scholar 

  54. Tresilwised N, Pithayanukul P, Plank C (2005) Factors affecting sizes of magnetic particles formed by chemical co-precipitation. Pharmacy Mahidol Ac Th 32:71–76

    Google Scholar 

  55. Kim DK, Zhang Y, Voit W et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36

    Article  Google Scholar 

  56. Vayssières L, Chanéac C, Tronc E, Jolivet JP (1998) Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J Colloid Interface Sci 205:205–212

    Article  Google Scholar 

  57. Li Y, Afzaal M, O’Brien P (2006) The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. J Mater Chem 16:2175

    Article  Google Scholar 

  58. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596

    Article  Google Scholar 

  59. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 927–934

    Google Scholar 

  60. Chen X, Liu Y, Tu D (2014) Lanthanide-doped luminescent nanomaterials. Springer, Berlin

    Book  Google Scholar 

  61. Mahalingam V, Vetrone F, Naccache R et al (2009) Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21:4025–4028

    Article  Google Scholar 

  62. Chen G, Ohulchanskyy TY, Kumar R et al (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4:3163–3168

    Article  Google Scholar 

  63. Naccache R, Vetrone F, Mahalingam V et al (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4 :Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723

    Article  Google Scholar 

  64. Liu Q, Sun Y, Yang T et al (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133:17122–17125

    Article  Google Scholar 

  65. Vetrone F, Mahalingam V, Capobianco JA (2009) Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+,Yb3+ nanocrystals. Chem Mater 21:1847–1851

    Article  Google Scholar 

  66. Yang D, Li C, Li G et al (2011) Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J Mater Chem 21:5923–5927

    Article  Google Scholar 

  67. Yi G, Peng Y, Gao Z (2011) Strong red-emitting near-infrared-to-visible upconversion fluorescent nanoparticles. Chem Mater 23:2729–2734

    Article  Google Scholar 

  68. Sun X, Zhang Y-W, Du Y-P et al (2007) From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. Chem A Eur J 13:2320–2332

    Article  Google Scholar 

  69. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  Google Scholar 

  70. Brollo MEF, López-Ruiz R, Muraca D et al (2014) Compact Ag@Fe3O4 core-shell nanoparticles by means of single-step thermal decomposition reaction. Sci Rep 4:6839

    Article  Google Scholar 

  71. Liz-Marzán LM, Kamat PV (2003) Nanoscale materials, 1st edn. Springer, New York

    Google Scholar 

  72. Langevin D (1992) Micelles and microemulsions. Annu Rev Phys Chem 43:341–369

    Article  Google Scholar 

  73. Danielsson I, Lindman B (1981) The definltion of microemulsion. Colloids Surf 3:391–392

    Article  Google Scholar 

  74. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. Arab J Chem 5:397–417

    Article  Google Scholar 

  75. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104:1141–1145

    Article  Google Scholar 

  76. Hashim M, Shirsath SE, Meena SS et al (2015) Manganese ferrite prepared using reverse micelle process: structural and magnetic properties characterization. J Alloys Compd 642:70–77

    Article  Google Scholar 

  77. Dongale TD, Shinde SS, Kamat RK, Rajpure KY (2014) Nanostructured TiO2 thin film memristor using hydrothermal process. J Alloys Compd 593:267–270

    Article  Google Scholar 

  78. Xu H, Wang H, Zhang Y et al (2004) Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceram Int 30:93–97

    Article  Google Scholar 

  79. Lee E, Kim Y, Heo J, Park K-M (2015) 3D metal–organic framework based on a lower-rim acid-functionalized calix[4]arene: crystal-to-crystal transformation upon lattice solvent removal. Cryst Growth Des 15:3556–3560

    Article  Google Scholar 

  80. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  Google Scholar 

  81. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chemie Int Ed 24:1026–1040

    Article  Google Scholar 

  82. Einarsrud M-A, Grande T (2014) 1D oxide nanostructures from chemical solutions. Chem Soc Rev 43:2187–2199

    Article  Google Scholar 

  83. Cai H, An X, Cui J et al (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5:1722–1731

    Article  Google Scholar 

  84. Tong L, Shi J, Liu D, Li Q (2012) Luminescent and magnetic properties of Fe3O4@SiO2@Y2O3:Eu3+ composites with core–shell structure. J Phys Chem C 116:7153–7157

    Article  Google Scholar 

  85. Zhong C, Yang P, Li X et al (2012) Monodisperse bifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er core–shell nanoparticles. RSC Adv 2:3194–3197

    Article  Google Scholar 

  86. Zhang L, Wang Y-S, Yang Y et al (2012) Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+,Er3+ for dual-modal bioimaging. Chem Commun 48:11238–11240

    Article  Google Scholar 

  87. Peng H, Liu G, Dong X et al (2012) Magnetic, luminescent and core–shell structured Fe3O4@YF3:Ce3+,Tb3+ bifunctional nanocomposites. Powder Technol 215–216:242–246

    Article  Google Scholar 

  88. Jie G, Yuan J (2012) Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem 84:2811–2817

    Article  Google Scholar 

  89. Wang H, Sun L, Li Y et al (2011) Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ ions. Langmuir 27:11609–11615

    Article  Google Scholar 

  90. Yu X, Wan J, Shan Y et al (2009) A facile approach to fabrication of bifunctional magnetic-optical Fe3O4@ZnS microspheres. Chem Mater 21:4892–4898

    Article  Google Scholar 

  91. Gu H, Zheng R, Zhang X, Xu B (2004) Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc 126:5664–5665

    Article  Google Scholar 

  92. Liu G, Peng H, Wang J, Dong X (2012) Fe3O4@GdF3:Er3+,Yb3+ nanoparticles: synthesis and bifunctional properties. J Optoelectron Adv Mater 14:205–209

    Article  Google Scholar 

  93. Wu T, Pan H, Chen R et al (2016) Effect of solution pH value changes on fluorescence intensity of magnetic-luminescent Fe3O4@Gd2O3:Eu3+ nanoparticles. J Rare Earths 34: 71–76

    Article  Google Scholar 

  94. He H, Xie MY, Ding Y, Yu XF (2009) Synthesis of Fe3O4@LaF3:Ce,Tb nanocomposites with bright fluorescence and strong magnetism. Appl Surf Sci 255:4623–4626

    Article  Google Scholar 

  95. Atabaev T, Kim H-K, Hwang Y-H (2013) Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer. Nanoscale Res Lett 8:357

    Article  Google Scholar 

  96. Yu X, Shan Y, Li G, Chen K (2011b) Synthesis and characterization of bifunctional magnetic–optical Fe3O4@SiO2@Y2O3:Yb3+,Er3+ near-infrared-to-visible up-conversion nanoparticles. J Mater Chem 21:8104–8109

    Article  Google Scholar 

  97. Wu A, Zhang Z (2015) Luminescent and magnetic properties of carbon-based FeYO3/Y2O3:Eu3+ nanocomposites. Appl Surf Sci 356:1077–1081

    Article  Google Scholar 

  98. Bi F, Dong X, Wang J, Liu G (2014) Coaxial electrospinning preparation and properties of magnetic–photoluminescent bifunctional CoFe2O4@Y2O3:Eu3+ coaxial nanofibers. J Mater Sci Mater Electron 25:4259–4267

    Article  Google Scholar 

  99. Peng H, Liu G, Dong X et al (2011) Preparation and characteristics of Fe3O4@YVO4:Eu3+ bifunctional magnetic–luminescent nanocomposites. J Alloys Compd 509:6930–6934

    Article  Google Scholar 

  100. Sun P, Zhang H, Liu C et al (2010) Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 26:1278–1284

    Article  Google Scholar 

  101. Du GH, Liu ZL, Lu QH et al (2006) Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites. Nanotechnology 17:2850–2854

    Article  Google Scholar 

  102. Shen J, Sun L-D, Zhang Y-W, Yan C-H (2010) Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem Commun 46:5731–5733

    Article  Google Scholar 

  103. Fang J, Saunders M, Guo Y et al (2010) Green light-emitting LaPO4 :Ce3+:Tb3+ koosh nanoballs assembled by p-sulfonato-calix[6]arene coated superparamagnetic Fe3O4. Chem Commun 46:3074–3076

    Article  Google Scholar 

  104. Zhu H, Tao J, Wang W et al (2013) Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly(St-NIPAM) core–shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34:2296–2306

    Article  Google Scholar 

  105. Zhu H, Shang Y, Wang W et al (2013) Fluorescent magnetic Fe3O4/rare earth colloidal nanoparticles for dual-modality imaging. Small 9:2991–3000

    Article  Google Scholar 

  106. Barick KC, Sharma A, Shetake NG et al (2015) Covalent bridging of surface functionalized Fe3O4 and YPO4:Eu nanostructures for simultaneous imaging and therapy. Dalt Trans 44:14686–14696

    Article  Google Scholar 

  107. Parchur AK, Ansari AA, Singh BP et al (2014) Enhanced luminescence of CaMoO4 :Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells. Integr Biol 6:53–64

    Article  Google Scholar 

  108. Ye F, Barrefelt Å, Asem H et al (2014) Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials 35:3885–3894

    Article  Google Scholar 

  109. Hong X, Li J, Wang M et al (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16:4022–4027

    Article  Google Scholar 

  110. Gaponik N, Radtchenko IL, Sukhorukov GB, Rogach AL (2004) Luminescent polymer microcapsules addressable by a magnetic field. Langmuir 20:1449–1452

    Article  Google Scholar 

  111. Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation. Nano Lett 4:409–413

    Article  Google Scholar 

  112. Chen O, Riedemann L, Etoc F et al (2014) Magneto-fluorescent core-shell supernanoparticles. Nat Commun 5:5093

    Article  Google Scholar 

  113. Yang J, Lim E-K, Lee HJ et al (2008) Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials 29:2548–2555

    Article  Google Scholar 

  114. Gallagher JJ, Tekoriute R, O’Reilly J-A et al (2009) Bimodal magnetic-fluorescent nanostructures for biomedical applications. J Mater Chem 19:4081–4084

    Article  Google Scholar 

  115. Yuet KP, Hwang DK, Haghgooie R, Doyle PS (2010) Multifunctional superparamagnetic janus particles. Langmuir 26:4281–4287

    Article  Google Scholar 

  116. Kaewsaneha C, Bitar A, Tangboriboonrat P et al (2014) Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization. J Colloid Interface Sci 424:98–103

    Article  Google Scholar 

  117. Chekina N, Horák D, Jendelová P et al (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21:7630–7639

    Article  Google Scholar 

  118. Ge Y, Zhang Y, He S et al (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295

    Article  Google Scholar 

  119. Torkpur-Biglarianzadeh M, Salami-Kalajahi M (2015) Multilayer fluorescent magnetic nanoparticles with dual thermoresponsive and pH-sensitive polymeric nanolayers as anti-cancer drug carriers. RSC Adv 5:29653–29662

    Article  Google Scholar 

  120. Lim E-K, Yang J, Dinney CPN et al (2010) Self-assembled fluorescent magnetic nanoprobes for multimode-biomedical imaging. Biomaterials 31:9310–9319

    Article  Google Scholar 

  121. Kaewsaneha C, Opaprakasit P, Polpanich D et al (2012) Immobilization of fluorescein isothiocyanate on magnetic polymeric nanoparticle using chitosan as spacer. J Colloid Interface Sci 377:145–152

    Article  Google Scholar 

  122. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  123. Santra S, Tapec R, Theodoropoulou N et al (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    Article  Google Scholar 

  124. Pogorilyi RP, Melnyk IV, Zub YL et al (2014) New product from old reaction: uniform magnetite nanoparticles from iron-mediated synthesis of alkali iodides and their protection from leaching in acidic media. RSC Adv 4:22606–22612

    Article  Google Scholar 

  125. Yu S-Y, Zhang H-J, Yu J-B et al (2007) Bifunctional magnetic-optical nanocomposites: grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture. Langmuir 23:7836–7840

    Article  Google Scholar 

  126. Yu S, Fu L, Zhou Y, Su H (2011) Novel bifunctional magnetic-near-infrared luminescent nanocomposites: near-infrared emission from Nd and Yb. Photochem Photobiol Sci 10:548–553

    Article  Google Scholar 

  127. Spaldin NA (2010) Magnetic materials. Fundamentals and applications. Cambridge University Press, New York

    Book  Google Scholar 

  128. Kurzen H, Bovigny L, Bulloni C, Daul C (2013) Electronic structure and magnetic properties of lanthanide 3+ cations. Chem Phys Lett 574:129–132

    Article  Google Scholar 

  129. Van Vleck JH (1978) Quantum mechanics-key understanding magnetism. Rev Mod Phys 50:181–189

    Article  Google Scholar 

  130. Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077

    Article  Google Scholar 

  131. Dorenbos P (2002) Light output and energy resolution of Ce3+-doped scintillators. Nucl Instrum Methods Phys Res A 486:208–213

    Article  Google Scholar 

  132. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45

    Article  Google Scholar 

  133. Xu W, Park JY, Kattel K et al (2012) A T1, T2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium–europium oxide nanoparticles. New J Chem 36:2361–2367

    Article  Google Scholar 

  134. Li C, Li YX, Law GL et al (2006) Fast water-exchange Gd3+-(DO3A-like) complex functionalized with Aza-15-crown-5 showing prolonged residence lifetime in vivo. Bioconjug Chem 17:571–574

    Article  Google Scholar 

  135. Szczeszak A, Ekner-Grzyb A, Runowski M et al (2015) Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates. J Nanopart Res 17:143

    Article  Google Scholar 

  136. Hu C, Xia T, Gong Y et al (2016) Emulsifier-free emulsion polymerized poly(MMA-HEMA-Eu(AA)3Phen)/Fe3O4 magnetic fluorescent bifunctional nanospheres for magnetic resonance and optical imaging. Chinese J Polym Sci 34:135–146

    Article  Google Scholar 

  137. Xia A, Gao Y, Zhou J et al (2011) Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32:7200–7208

    Article  Google Scholar 

  138. Zhu X, Zhou J, Chen M et al (2012) Core–shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33:4618–4627

    Article  Google Scholar 

  139. Guo R, Wang J, Dong X et al (2014) A new tactics to fabricate flexible nanobelts with enhanced magnetic-luminescent bifunction. J Mater Sci Mater Electron 25:2561–2568

    Article  Google Scholar 

  140. Leyu W, Zhihua Y, Yi Z, Lun W (2009) Bifunctional nanoparticles with magnetization and luminescence. J Phys Chem C 113:3955–3959

    Google Scholar 

  141. Li B, Fan H, Zhao Q, Wang C (2016) Synthesis, characterization and cytotoxicity of novel multifunctional Fe3O4@SiO2@GdVO4:Dy3+ core-shell nanocomposite as a drug carrier. Materials 9:149

    Article  Google Scholar 

  142. Sukumar UK, Bhushan B, Dubey P et al (2013) Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int Nano Lett 3:1–17

    Article  Google Scholar 

  143. Runowski M, Lis S (2015) Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3). J Lumin 170:484–490

    Article  Google Scholar 

  144. Sonuga-Barke E, Brandeis D, Cortese S et al (2013) Response to Chronis-Tuscano et al. and Arns and Strehl. Am J Psychiatry 170:800–802

    Article  Google Scholar 

  145. Roland S, Thomas W, Yitzhak R et al (1957) Targeted magnetic hyperthermia. Ther Deliv 2:815–838

    Google Scholar 

  146. Walter A, Billotey C, Garofalo A et al (2014) Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem Mater 26:5252–5264

    Article  Google Scholar 

  147. Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperth 19:252–266

    Article  Google Scholar 

  148. Xie J, Zhang Y, Yan C et al (2014) High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 35:9126–9136

    Article  Google Scholar 

  149. Thrall DE, Larue SM, Pruitt AF et al (2006) Changes in tumour oxygenation during fractionated hyperthermia and radiation therapy in spontaneous canine sarcomas. Int J Hyperth 22:365–373

    Article  Google Scholar 

  150. Gazeau F, Lévy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine (Lond) 3:831–844

    Article  Google Scholar 

  151. Luwang MN, Chandra S, Bahadur D, Srivastava SK (2012) Dendrimer facilitated synthesis of multifunctional lanthanide based hybrid nanomaterials for biological applications. J Mater Chem 22:3395–3403

    Article  Google Scholar 

  152. Singh LP, Singh NP, Srivastava SK (2015) Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells. Dalt Trans 44:6457–6465

    Article  Google Scholar 

  153. Prasad AI, Parchur AK, Juluri RR et al (2013) Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application. Dalton Trans 42:4885–4896

    Article  Google Scholar 

  154. Kempe H, Kates SA, Kempe M (2011) Nanomedicine’s promising therapy: magnetic drug targeting. Expert Rev Med Devices 8:291–294

    Article  Google Scholar 

  155. Marcu A, Pop S, Dumitrache F et al (2013) Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Appl Surf Sci 281:60–65

    Article  Google Scholar 

  156. Hola K, Markova Z, Zoppellaro G et al (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33:1162–1176

    Article  Google Scholar 

  157. Mohapatra S, Rout SR, Das RK et al (2016) Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 32:1611–1620

    Article  Google Scholar 

  158. Bao Y, Wen T, Samia ACS et al (2015) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51:513–553

    Article  Google Scholar 

  159. Wan Q, Xie L, Gao L et al (2013) Self-assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery. Nanoscale 5:744–752

    Article  Google Scholar 

  160. Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32:1110–1120

    Article  Google Scholar 

  161. Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  Google Scholar 

  162. Xu H, Cheng L, Wang C et al (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32:9364–9373

    Article  Google Scholar 

  163. Singh RK, Patel KD, Kim JJ et al (2014) Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl Mater Interfaces 6:2201–2208

    Article  Google Scholar 

  164. Snyder P, Joshi A, Serna JD (2014) Modeling a nanocantilever-based biosensor using a stochastically perturbed harmonic oscillator. Int J Nanosci 13:1450011

    Article  Google Scholar 

  165. Justino CIL, Rocha-Santos TAP, Cardoso S et al (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC Trends Anal Chem 47:27–36

    Article  Google Scholar 

  166. Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:291–304

    Article  Google Scholar 

  167. Arvand M, Hassannezhad M (2014) Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater Sci Eng C 36:160–167

    Article  Google Scholar 

  168. Teymourian H, Salimi A, Khezrian S (2013) Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron 49:1–8

    Article  Google Scholar 

  169. Dou Q, Idris NM, Zhang Y (2013) Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 34:1722–1731

    Article  Google Scholar 

  170. Nichkova M, Dosev D, Gee SJ et al (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77:6864–6873

    Article  Google Scholar 

  171. Shen J, Sun LD, Zhu JD et al (2010b) Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes. Adv Funct Mater 20:3708–3714

    Article  Google Scholar 

  172. Idris NM, Li Z, Ye L et al (2009) Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30:5104–5113

    Article  Google Scholar 

  173. Niedbala RS, Feindt H, Kardos K et al (2001) Detection of analytes by immunoassay using up-converting phosphor technology. Anal Biochem 293:22–30

    Article  Google Scholar 

  174. Deng R, Xie X, Vendrell M et al (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), the World Academy of Sciences (TWAS) for the advancement of science in developing countries, and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil). Priscila V. Khan is gratefully acknowledged for her assistance in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latif U. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, L.U., Khan, Z.U. (2017). Bifunctional Nanomaterials: Magnetism, Luminescence and Multimodal Biomedical Applications. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_4

Download citation

Publish with us

Policies and ethics