Skip to main content

Manufactured Textile Fibers

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

This chapter reviews the details of the manufacture of most of the major types of man-made fibers that have gone well beyond the research and development stage and have found a niche market, and the factors that contribute to the appreciation and understanding of the nomenclature, the history of the use of textiles, and the consumption trends of different types of fibers. Also addressed in this chapter are three general sections of interest. These include: methods by which the man-made fibers are produced in unusually fine, i.e., micro or nano, sizes, practical ways by which the important chemical and physical properties are commonly varied in fibers, and details of the use of fibers and textiles in medicine—a novel and increasingly popular and successful application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each year the ASTM publishes in its Book of Standards, the most recent and accepted definition and test methods used in the textile and fiber industries.

References

  1. Time-Life Books (1970) Seven centuries of art. Time-Life Books, New York

    Google Scholar 

  2. Mark H, Whitby GS (1940) Collected papers of W H. Carothers. Wiley, New York

    Google Scholar 

  3. Turbak A (1985) Rayon. In: Klingsberg A, Baldwin T (eds) Encyclopedia of polymer science and engineering, vol 14, 2nd edn. Wiley, New York, p 55

    Google Scholar 

  4. Gupta BS, Hong CJ (1995) Absorbent characteristics of nonwovens containing cellulosic fibers. INDA INJ 7(1):38

    Google Scholar 

  5. Davis S (1989) All you need to know about Tencel. Text Horizons 9(2):62

    Google Scholar 

  6. Albrecht W, Reintjes M, Wulfhorst B (1997) Lyocell fibers. Chem Fibers Int 47:298

    Google Scholar 

  7. Markham JW (1952) Competition in the Rayon industry. Harvard University Press, Cambridge, MA, p 16

    Book  Google Scholar 

  8. Robinson JS (1980) Fiber-forming polymers: recent advances. Noyes Data Corporation, Park Ridge, NJ

    Google Scholar 

  9. Barnes CE (1987) Nylon 4-development and commercialization. Lenzinger Ber 62:62–66

    CAS  Google Scholar 

  10. O’Sullivan D (1984) Conventional nylons encounter strong new competitor in nylon 46. Chem Eng News 62(21):33

    Article  Google Scholar 

  11. Jung D-W, Kotek R, Vasanthan N, Tonelli AE (2004) High modulus Nylon 66 fibers through Lewis acid-base complexation to control hydrogen bonding and enhance drawing behavior. Am Chem Soc 91:354–355

    CAS  Google Scholar 

  12. Davis GW, Everage AE, Talbot JR (1984) Polyester fibers: variants. Fiber Producer 12(6):45

    Google Scholar 

  13. Smierciak RC, Wardlow E, Lawrence B (1997) U.S. Patent 5,602,222

    Google Scholar 

  14. Smierciak RC, Wardlow E, Lawrence B (1997) U.S. Patent 5,618,901

    Google Scholar 

  15. Hutchinson SR (2005) Thermoplastic polyacrylonitrile. M.S. thesis, North Carolina State University, Raleigh

    Google Scholar 

  16. Ahmed M (1982) Polypropylene fibers-science and technology, textile science and technology, vol 5. Elsevier, New York, p 16

    Google Scholar 

  17. Lieberman RB, Barbe PC (1990) Propylene polymers. In: Kroschwitz JI (ed) Concise encyclopedia of polymer science and engineering. Wiley, New York, p 916

    Google Scholar 

  18. Hogan JP, Banks RL (1986) History of crystalline polypropylene. In: Seymour RB, Cheng T (eds) History of polyolefins. D. Reidel, Boston, p 103

    Chapter  Google Scholar 

  19. Gupta BS, Smith DK (2002) Nonwovens in absorbent materials. In: Chatterjee PK, Gupta BS (eds) Absorbent technology. Elsevier, Amsterdam, p 378

    Google Scholar 

  20. Madsen JB (2001) New generation of hydrophilic spun melt composites. Nonwovens World 69

    Google Scholar 

  21. Sekar N (2000) Chitosan in textile processing: an update. Collegian 47(2):33

    Google Scholar 

  22. Kotek R, Afshari M, Gupta B, Kish MH, Jung D (2004) Polypropylene alloy filaments dyeable with disperse dyes. Color Technol 120:26

    Article  CAS  Google Scholar 

  23. Zwijnenburg A, Pennings AJ (1976) Longitudinal growth of polymer crystals from flowing solutions III. Polyethylene crystals in Couette flow. Colloid & Polym Sci 254:868

    Article  CAS  Google Scholar 

  24. Smith P, Lemstra PJ (1980) Ultra-high-strength polyethylene filaments by solution spinning/drawing. J Mater Sci 15:505

    Article  CAS  Google Scholar 

  25. Kavesh S, Prevorsek D (1983) U.S. Patent 4,413,110, to Allied Chemical

    Google Scholar 

  26. Kwolek DL (1971) U.S. Patent 3,600,350, to E. I. du Pont de Nemours and Co.

    Google Scholar 

  27. Blades, H. (1973) U.S. Patent 3,767,756, to E. I. du Pont de Nemours and Co., Inc.

    Google Scholar 

  28. McIntyre E (1988) High Performance for Industrial fibers. Text Horizons 8(10):43

    Google Scholar 

  29. Chenevey EC, Conciatori AB (1970) U.S. Patent 3,549,603, to Celanese Corp.

    Google Scholar 

  30. Coffin DR, Serad GA, Hicks HL, Montgomery RT (1982) Properties and applications of Celanese PBI—polybenzimidazole fiber. Text Res J 52:466

    Article  CAS  Google Scholar 

  31. Gore RW (1973) U.S. Patent 3,953,566, to W. L. Gore & Associates, Inc., 1973, April 27

    Google Scholar 

  32. Menardi-MikroPul LLC. www.mikropul.com/products/media/mikrotex.html

  33. Edmonds JT Jr, Hill HW Jr (1967) U.S. Patent 3,354,129, to Phillips Petroleum Company

    Google Scholar 

  34. Scruggs JG, Reed JO (1985) Polyphenylene sulfide fibers. In: Lewin M, Preston J (eds) High technology fibers, part A. Marcel Dekker, Inc., New York

    Google Scholar 

  35. Formhals A (1934) Process and apparatus for preparing artifical threads. US Patent 1,975,504

    Google Scholar 

  36. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  37. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  38. Greisler HP (1991) Biohybrids-biological coatings in vascular grafts. In: New biologic and synthetic vascular prostheses. R. G. Landes Company, Austin, pp 33–46

    Google Scholar 

  39. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Article  CAS  Google Scholar 

  40. Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37:472–480

    Article  Google Scholar 

  41. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  42. Kim SH, Kwon JH, Chung MS, Chung E, Jung Y, Kim SH, Kim YH (2006) Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. J Biomater Sci Polym Ed 17(12):1359–1374

    Article  CAS  Google Scholar 

  43. Haslauer CM, Moghe AK, Osborne JA, Gupta BS, Loboa EG (2011) Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells. J Biomater Sci Polym Ed 22(13):1695–1712

    Article  CAS  Google Scholar 

  44. Smart G, Miraftab M, Kennedy J, Groocock M (2005) Chitosan: crawling from crab shells to wound dressings. In: Medical textiles and biomaterials for healthcare. Woodhead Publishing, Cambridge

    Google Scholar 

  45. Wang L, Khor E, Wee A, Lim L (2002) Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res 63(5):610–618

    Article  CAS  Google Scholar 

  46. Gupta BS (1998) Medical textile structures: an overview. Med Plast Biomater 5(l):16–30

    Google Scholar 

Suggested Reading

  • The reader is referred to the four encyclopedias listed below for additional information. They contain enormous quantities of information on manufactured fibers as well as comprehensive bibliographies.

    Google Scholar 

  • Concise encyclopedia of polymer science and engineering. Wiley, New York, 1990

    Google Scholar 

  • Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York, 1985 (17 volumes, index volume, and supplement volume)

    Google Scholar 

  • Encyclopedia of polymer science and technology. Interscience Publishers, New York (16 volumes)

    Google Scholar 

  • Kirk-Othmer encyclopedia of chemical technology, 3rd edn. Interscience Publishers, New York (21 volumes and a supplement, 3rd edn; to date, 16 volumes)

    Google Scholar 

  • The following books contain broad discussions of manufactured textile fibers.

    Google Scholar 

  • Baer E, Moet A (eds) (1991) High performance polymers. Hanser, New York

    Google Scholar 

  • Billmeyer FW (1984) Textbook of polymer science. Wiley, New York

    Google Scholar 

  • Ciferri A, Ward IM (eds) (1979) Ultra-high modulus polymers. Applied Science, London

    Google Scholar 

  • Datye KV (1984) Chemical processing of synthetic fibers and blends. Wiley, New York

    Google Scholar 

  • Hearle JWS, Peters RH (eds) (1963) Fibre structure. The Textile Institute, Manchester, Butterworths, London

    Google Scholar 

  • Lewin M, Preston J (eds) (1983) Handbook of fiber science and technology: high technology fibers, vol III. Marcel Dekker, New York

    Google Scholar 

  • Mark HF, Atlas SM, Cernia E (eds) Man-made fibers; science and technology, vols I, II, and III. Wiley, New York, 1967, 1968, and 1968

    Google Scholar 

  • Moncrieff RW (1975) Man-made fibres, 6th edn. Wiley, New York

    Google Scholar 

  • Morton WE, Hearle JWS (1993) Physical properties of textile fibres. The Textile Institute, Manchester, Butterworths, London

    Google Scholar 

  • Peters RH Textile chemistry; the chemistry of fibers, vol I and impurities in fibers; purification of fibers, vol II. Elsevier, New York, 1963 and 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupender S. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, B.S. (2017). Manufactured Textile Fibers. In: Kent, J., Bommaraju, T., Barnicki, S. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-52287-6_24

Download citation

Publish with us

Policies and ethics