Skip to main content

Gesture Controlled Hospital Beds for Home Care

  • Chapter
  • First Online:
Ambient Assisted Living

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

This article introduces a gesture-based user interface for hospital beds. This interface enables caregivers to focus on their patients and have both hands available for mobilizing and transferring them. Gestures are detected either via static (96% sensitivity) or dynamic gestures (67.5% sensitivity) and might be corrected by an extra repetition. Once gestures are correctly detected, caregivers can trigger bed movements via a foot switch as a hands-free operation, which as well functions as a dead man button. The evaluation of the usability through interviews with caregivers highlighted the system’s general applicability, but as well some future challenges that have to be solved in order to achieve a system for every-day use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradski, G.: OpenCV. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  2. Celebi, S., Aydin, A.S., Temiz, T.T., Arici, T.: Gesture recognition using skeleton data with weighted dynamic time warping. In: Battiato, S., Braz, J. (eds.) VISAPP 2013—Proceedings of the International Conference on Computer Vision Theory and Applications, vol. 1, Barcelona, Spain, 21–24 February 2013, pp. 620–625 (2013)

    Google Scholar 

  3. Dhawan, A., Honrao, V.: Implementation of hand detection based techniques for human computer interaction. Int. J. Comput. Appl. 72(17) (2013)

    Google Scholar 

  4. Gallo, L., Placitelli, A., Ciampi, M.: Controller-free exploration of medical image data: experiencing the kinect. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6 (2011). doi:10.1109/CBMS.2011.5999138

  5. Gerdes, S., Redlich, C., Yilmaz, M.: 4. Gesundheitsbericht 2015: Norovirus kompakt (2015). http://www.hannover.de/content/download/542635/12405677/file/Gesundheitsbericht_2015_Norovirus.pdf. Accessed 13 Nov 2015

  6. Hasan, H., Abdul-Kareem, S.: Static hand gesture recognition using neural networks. Artif. Intell. Rev. 41(2), 147–181 (2014). doi:10.1007/s10462-011-9303-1

  7. Karam, M.: A Framework for Gesture-Based Human Computer Interactions. VDM Verlag, Saarbrücken (2009)

    Google Scholar 

  8. Keiser, T., Höß, O., Klein, B., Neuhüttler, J., Schneider, H., Vetter, T.: Gestensteuerung im Pflegeumfeld—Das Projekt GeniAAL: Grundlagen, Anwendungsfelder, Technologien und Erfahrungen. Books on Demand (2015). https://books.google.de/books?id=qerVBgAAQBAJ

  9. Keskin, C., Kra, F., Kara, Y., Akarun, L.: Real time hand pose estimation using depth sensors. In: Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K. (eds.) Consumer depth cameras for computer vision, advances in computer vision and pattern recognition, pp. 119–137. Springer, London (2013). doi:10.1007/978-1-4471-4640-7_7

  10. Kühnel, C., Westermann, T., Hemmert, F., Kratz, S., Möller, S.: I’m home: defining and evaluating a gesture set for smart-home control. Int. J. Hum. Comput. Stud. 69(11), 693–704 (2011). doi:10.1016/j.ijhcs.2011.04.005

    Article  Google Scholar 

  11. Liwicki, S., Everingham, M.: Automatic recognition of finger spelled words in british sign language. In: Proceedings of the 2nd IEEE Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB’09). In conjunction with CVPR2009, pp. 50–57. IEEE Computer Society, Los Alamitos, CA, USA (2009)

    Google Scholar 

  12. Microsoft Developer Network: Skeletal tracking (2015). https://msdn.microsoft.com/en-us/library/hh973074.aspx. Accessed 13 Nov 2015

  13. Müller, M.: Information Retrieval for Music and Motion. Springer, New York (2007). doi:10.1007/978-3-540-74048-3

  14. Music, D., Eghbal, D., Vargas, S.: User interface and identification in a medical device system and method (2010). https://www.google.com/patents/US7706896. US Patent 7,706,896

  15. Park, S., Yu, S., Kim, J., Kim, S., Lee, S.: 3d hand tracking using kalman filter in depth space. EURASIP J. Adv. Signal Proces. 2012(1), 36 (2012). doi:10.1186/1687-6180-2012-36

  16. Pham, C.H., Le, Q.K., Le, T.H.: Human action recognition using dynamic time warping and voting algorithm. VNU J. Sci. Comput. Sci. Commun. Eng. 30(3), 22–30 (2014)

    Google Scholar 

  17. Pohl, C.: Der zukünftige Bedarf an Pflegearbeitskräften in Deutschland: Modellrechnungen für die Bundesländer bis zum Jahr 2020. Comparative Population Studies—Zeitschrift für Bevölkerungswissenschaft 35(2), 357–378 (2010)

    Google Scholar 

  18. Preim, B., Dachselt, R.: Interaktive Systeme: Band 2: User Interface Engineering, 3D-Interaktion, Natural User Interfaces, vol. 2. Springer Vieweg (2015). doi:10.1007/978-3-642-45247-5

  19. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  20. Rautaray, S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015). doi:10.1007/s10462-012-9356-9

  21. Rehrl, T., Blume, J., Bannat, A., Rigoll, G., Wallhoff, F.: On-line learning of dynamic gestures for human-robot interaction. In: 35th German Conference on Artificial Intelligence, KI 2012, Saarbrücken, Germany (2012)

    Google Scholar 

  22. Ren, Y., Zhang, F.: Hand gesture recognition based on meb-svm. In: International Conference on Embedded Software and Systems, 2009. ICESS ’09, pp. 344–349 (2009). doi:10.1109/ICESS.2009.21

  23. Ren, Z., Yuan, J., Zhang, Z.: Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 1093–1096. ACM, New York (2011). doi:10.1145/2072298.2071946

  24. Schramm, R., Jung, R.C., Miranda, E.R.: Dynamic time warping for music conducting gestures evaluation. IEEE Trans. Multimedia 17(2), 243–255 (2015). doi:10.1109/TMM.2014.2377553

  25. Sklansky, J.: Finding the convex hull of a simple polygon. Pattern Recognition Letters 1(2), 79–83 (1982). doi:10.1016/0167-8655(82)90016-2

  26. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. CVGIP—Graph. Mod. Image Proces. 30(1), 32–46 (1985)

    Google Scholar 

  27. Trigueiros, P., Ribeiro, F., Reis, L.: Hand gesture recognition for human computer interaction: a comparative study of different image features. In: Filipe, J., Fred, A. (eds.) Agents and Artificial Intelligence, Communications in Computer and Information Science, vol. 449, pp. 162–178. Springer, Berlin (2014). doi:10.1007/978-3-662-44440-5_10

  28. Wahl, F.M.: Digitale Bildsignalverarbeitung: Grundlagen, Verfahren. Springer, Beispiele (1984)

    Book  Google Scholar 

  29. Winther, B., McCue, K., Ashe, K., Rubino, J., Hendley, O.: Contamination of environmental surfaces during normal daily activities of hotel guests with rhinovirus colds. In: 46th Annual ICAAC—Interscience Conference on Antimicrobial Agents and Chemotherapy, September 27–30, 2006, San Francisco (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fudickar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fudickar, S., Flessner, J., Volkening, N., Steen, EE., Isken, M., Hein, A. (2017). Gesture Controlled Hospital Beds for Home Care. In: Wichert, R., Mand, B. (eds) Ambient Assisted Living. Advanced Technologies and Societal Change. Springer, Cham. https://doi.org/10.1007/978-3-319-52322-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52322-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52321-7

  • Online ISBN: 978-3-319-52322-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics